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1 Introduction

Bitcoin is a digital currency launched in 2009 by a person or persons assuming the name

Satoshi Nakamoto [4]. Since its launch, Bitcoin has been steadily growing in value, and

along with this has come an inevitable amount of media attention and a slew of rival digital

coins (called cryptocurrencies). Bitcoin was the first of these cryptocurrencies, and was

also the first digital currency to be totally decentralised. This means there is no presiding

authority that verifies Bitcoin transactions, as with online banking. Instead, transactions

are tracked via the blockchain, a copy of the list of who owns which coins kept by all users.

When a user wants to transfer ownership of their coins to someone else, they send out

a message to the userbase to update their copies of the blockchain, thus eliminating the

need for a central authority to maintain the network.

The main issue in this situation is how exactly a user proves they own as many coins as

they claim to. To prevent users from fraudulently claiming ownership over vast swathes

of the currency, a digital signature algorithm is implemented in the transaction process. A

digital signature algorithm (or DSA) is an example of public key cryptography, in which

a user can trasmit private information using only publicly available information. In brief,

a user has a public key and a private key—with the former being common knowledge

(even to attackers), and the latter kept secret. From their public and private keys they

can generate a signature, which is then checked by other users against their public key in

order to verify it.

The hard part of this process, what makes it a mathematically interesting question to

study, is how to design it in such a way that a user’s private key cannot be reverse

engineered from their public information. The solution designed for the original digital

signature algorithm was to use arithmetic in the integers, modulo some prime p. In this

setting, the discrete logarithm problem is difficult to solve, making it a useful basis for a

public key encryption algorithm. The discrete logarithm problem for (Z/pZ)× is, given

two integers x and y and p prime, to find k ∈ Z such that

xk ≡ y (mod p) (1)

The discrete log problem has the dual advantage of being hard to solve and easy to verify.

That is, if you are given x and y and asked to find k, it is believed to be hard to find

k quickly. Conversely, given x and k, it is very easy to check whether xk ≡ y (mod p).

Note, we say the discrete log problem is believed to be difficult; currently there is no fast

algorithm for computing them, but there is also no proof that there is no such algorithm.

Bitcoin uses a variant of the DSA to sign its transactions, called the elliptic curve digital

signature algorithm (or ECDSA). The underlying concept is the same: instead of calcu-
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lating discrete logs in the integers modulo p, it uses discrete logs in a finite group arising

from an algebraic object called an elliptic curve.

The ECDSA has several advantages over the regular DSA, as well as several potential

problems. For example, the ECDSA boasts a theoretical doubling of security over the

regular DSA for private keys of the same length. This means the implementation can

be made as efficient as the DSA but with much less memory usage. However, in order

for the encryption to remain secure, an ECDSA deisgner must choose the elliptic curve

over which the problem takes place very carefully. A poorly chosen curve can weaken the

discrete logarithm problem, and in turn make the encryption much easier to break.

In this project I will discuss the mathematics that underpins the elliptic curve digital

signature algorithm, and why it is important to understand it from a cryptographic per-

spective. Elliptic curve cryptography has something of “playing with fire” aspect to it:

the technology can be hugely beneficial if used properly, but carelessness and ignorance

can lead to disaster.

If the benefits of elliptic curve cryptography are to be reaped, then, it is essential for

the implementor to understand the mathematics behind the technology. There are many

standards used in elliptic curve cryptography, designed by various parties with various

motivations, sometimes less-than wholesome ones. In order to know whether to trust

these standards, it is important to understand how the elliptic curves they use are chosen,

and what weaknesses they might have. To to this, one needs a decent understanding of

what an elliptic curve actually is, and how it relates to cryptography.

2 Elliptic Curve Algebra

2.1 Projective Space

We start with a brief look at projective space, as it aids in understanding certain otherwise-

baffling parts of the theory of elliptic curves.

Definition 2.1. Let K be a field. We define an equivalence relation on the points

(x0, x1, ..., xn) ∈ Kn+1 by (x0, x1, ..., xn) ∼ (y0, y1, ..., yn) if and only if there is a non-

zero number λ ∈ K such that (x0, x1, ..., xn) = (λy0, λy1, ..., λyn). Then the n-dimensional

projective space over K is

Pn(K) = (Kn+1 \ {(0, 0, ..., 0)})/ ∼

Points in projective space are denoted [x0 : x1 : ... : xn].
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Given any polynomial f ∈ K[x1, ..., xn], we can obtain a homogeneous polynomial F over

the associated projective space Pn(K) by setting

F (x1, ...xn, z) := zdeg(f)f
(x1
z
, ...,

xn
z

)
This process is called homogenisation, and can be reversed by setting z = 1.

Our main motivation for looking at polynomials over projective space will be to study

their solution sets, i.e. those points where the polynomials vanishes. This, in turn, gives

us information about the various polynomials in affine space we obtain by dehomogonising

our projective curve at one of its variables.

The points on a projective cubic curve can be endowed with a group structure, but only

when the curve is smooth. Informally, this just means the curve has no sharp turns or

self-intersections. We formalise this notion using the partial derivatives of a polynomial.

Definition 2.2. Given a polynomial F over Pn(K), its associated curve C given by the set

{[x0 : ... : xn] | F ([x0 : ... : xn]) = 0} is called smooth if, for every point [x0 : x1 : ... : xn]

that lies on C, we have that

∂F

∂xi
([x0 : x1 : ... : xn]) 6= 0

for each xi. We also call the curve non-singular in this case. We call a point where all

the partial derivatives of F vanish a singular point of C.

Note, for fields like Fp where the notion of limits doesn’t make much sense, we just take

the formal derivative of the polynomial F . With this definition in hand, we can define an

elliptic curve.

Definition 2.3. An elliptic curve E over a field K is a projective smooth curve given by

the zero set of a polynomial

F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X2Z − a4XZ2 − a6Z3

Equally, it can be thought of as all points [X : Y : Z] ∈ P2(K) where

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

In either case, a1, a2, a3, a4, a6 ∈ K, and this representation is called the long Weirstrass

form of E.
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This defines elliptic curves in their fullest generality. However, our purposes will be mostly

cryptographic, and the vast majority of elliptic curves in use today are defined over a field

whose characterisatic is neither 2 nor 3. This is helpful, because it allows us to simplify

the representation of an elliptic curves a great deal.

Proposition 2.4. Let E be an elliptic curve over a field K of characteristic neither 2 nor

3. Then E is the zero set of a polynomial

F (X,Y, Z) = Y 2Z −X3 −AXZ2 −BZ3

for some A,B ∈ K. This representation is called the short Weirstrass form of E.

Proof. Take a polynomial F as in Definition 2.3.

If our field does not have characteristic 2, we can complete the square with respect to Y ,

giving a polynomial of the form

F (X ′, Y ′, Z ′) = Y ′2Z ′ −X ′3 − b2X ′2Z ′ − b4X ′Z ′2 − b6Z ′3

Our field is not characteristic 3 either, so we can use the substitution X ′ 7→ X ′ − b2Z
3 to

depress the polynomial, removing its X ′2Z ′ term. This leaves us with a polynomial of

exactly the form required.

From here on, we will ignore curves that need to be defined in long Weirstrass form—that

is, curves over fields of characteristic 2 or 3. While this makes our account a little less

general, the details of how to extend the algebraic structure we will impose on E to curves

over these fields are needless and will only slow us down, especially given their lack of use

in real-world contexts. For a more complete account, see [1], page 47.

Once we have an elliptic curve given by Y 2Z = X3 + AXZ2 +BZ3, it is only natural to

ask what it looks like. For this, we have to dehomogenise the associated polynomial and

look at it over the 2-dimensional affine space, K2.

It is much easier to check whether a plane cubic curve is an elliptic curve or not when if we

can write it in short Weirstrass form. If we have y2 = x3 +Ax+B and we want to check

whether it has any singular points, we only need that the discriminant of the polynomial

x3 +Ax+B is non-zero. A zero discriminant means the derivative of x3 +Ax+B shares

a root with x3 + Ax+ B itself, so this root is a reapeated root of x3 + Ax+ B. Then at

this point, all the partial derivatives will be zero due to the shared root.

Calculating the discriminant of x3 + Ax + B, we see a curve in short Weirstrass form is

an elliptic curve if and only if 4A3 + 27B2 6= 0. This is a much more useful criterion for
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testing whether we have an elliptic curve than calculating partial derivatives every time.

It also extends to the homogenised version of the curve in projective space.

Example 1. We take F (X,Y, Z) = Y 2Z −X3 +XZ2 − Z3 and homogenise it by setting

Z = 1. This gives the polynomial f(x, y) = y2 − x3 + x − 1, and the associated curve

C = {(x, y) ∈ Q2 : y2 = x3 − x+ 1}. Plotting these points on the x, y-plane gives:

−3 −2 −1 1 2 3

−2

2

Figure 1: y2 = x3 − x+ 1 over R

This is as close as we can get to seeing the entire elliptic curve. This is not the whole

picture, though. There is an inclusion of Q2 ⊂ P2(Q) given by sending the point (x, y) to

[x : y : 1], but if we want to capture all the other points of an elliptic curve we will need to

vary this final co-ordinate. If we replace it with any non-zero rational number z, we can

see it will just be equivalent to the point [xz : yz : 1], which we will have already captured

by the inclusion above. So the only other points in P2(Q) not given this way are those

whose final co-ordinate is 0.

To find out how much we’re missing, we simply set Z = 0 in F (X,Y, Z) = Y 2Z −X3 −
AXZ2 −BZ3, giving us F (X,Y, 0) = −X3. If this point lies on the elliptic curve then F

must vanish at this point, meaning X = 0. In projective space, we cannot have the point

[0 : 0 : 0], so the Y co-ordinate must be (up to scaling) 1.

This means when we look at the affine dehomogenisation of our curve, all we lose is the

point [0 : 1 : 0]. This point is usually referred to as the point at infinity of the elliptic curve,

a name it gets because of the way we obtain F from f . Recall, F (X,Y, Z) = Z3f(XZ ,
Y
Z ),

and substituting Z = 0 would require us to evaluate f at infinity in both arguments. From

here we will denote this point simply by ∞.
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2.2 The Group Law

When we define the group structure on our elliptic curve, this point at infinity will serve

as the identity element. But how do we get a group from the points of an elliptic curve?

The naive method would be to simply define addition of points component-wise, that is

to say for P = (x0, y0) and Q = (x1, y1), define P +Q = (x0 + x1, y0 + y1). Unfortunately

this does not work, as we can see in the above example. The point (1, 1) lies on the curve

y2 = x3−x+1 (or equivlanetly, the point [1 : 1 : 1] lies on the curve Y 2Z = X3−XZ2+Z3),

but the point (1, 1)“ + ”(1, 1) = (2, 2) does not (nor [2 : 2 : 1] in the projective case).

The method for adding points on an elliptic curve is a little more complicated, and is best

explained in the affine case (with a few appeals to the projective setting in the detailled

parts). To wit, we define the group law as follows:

Definition 2.5. For a field K and an elliptic curve E, the group law on the set E(K) is

given as follows: for two points P and Q in E(K), the point P ⊕ Q is found by drawing

the line connecting P and Q, finding the third point R of intersection of this line with E,

then drawing the vertical line through the point R and seeing where that line intersects the

curve again.

Or, pictorally:

−3 −2 −1 1 2 3

−2

2

P Q

R

P ⊕Q

Figure 2: Elliptic Curve addition

There are a few things to note about this definition. First, the act of drawing the vertical

line through R is actually masking the following process: transform the curve into its

projective form and connect the image of R to the point at infinity [0 : 1 : 0] by a straight

line, find where this line connects the curve again, and dehomogenise. In most cases,

this is simply achieved by reflecting through the x-axis, but it will become an important

wrinkle when we come to prove this process indeed forms a group.

Second, “the line connecting P and Q” doesn’t make much sense when P = Q unless we

allow for the drawing of the tangent at P in this case (this is in fact how we tackle this

problem).
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And third, if we draw a tangent at one of the points where our curve crosses the x-axis,

we will get a vertical line. Once again, this is really the process of drawing the tangent at

the image of P on the associated projective curve and finding where it again intersects the

curve. This will be at the point at infinity only, giving R = [0 : 1 : 0]. Connecting R to

the point at infinity gives a degenerate line: just the point [0 : 1 : 0], which only intersects

the curve again at itself. Thus these points P will all have order 2 in the group.

All that remains to show is that the group axioms actually hold.

Theorem 2.6. The group law as described above endows E(K) with the structure of an

abelian group, with identity element [0 : 1 : 0].

Proof. For E(K) to be an abelian group, it must satisfy the following for all P,Q,R ∈
E(K):

1. (Closure) P ⊕Q is in E(K)

2. (Commutativity) P ⊕Q = Q⊕ P

3. (Identity) P ⊕ [0 : 1 : 0] = P

4. (Inverses) There is a −P ∈ E(K) such that P ⊕ (−P ) = [0 : 1 : 0]

5. (Associativity) P ⊕ (Q⊕R) = (P ⊕Q)⊕R

Closure: If we have points P = (x0, y0) 6= Q = (x1, y1), we can find the point R as

follows: writing the line between P and Q as y = mx + c and substituting gives us that

(mx+ c)2 = x3 +Ax+B, or x3−m2x2 + (A− 2cm)x+ (B− c2) = 0. Normally factoring

a cubic polynomial is non-trivial, but we already know two roots of this function, namely

x0 and x1, so writing the final root as x2 we have that

x3 −m2x2 + (A− 2cm)x+ (B − c2) = (x− x0)(x− x1)(x− x2)

Expanding the right hand side and equating coefficients gives that m2 = x0 + x1 + x2,

and as m was obtained via field operations on elements in K, we get that m2 is in K

and so x2 ∈ K, again by the closure of our field K. Then as R = (x2, y2) lies on the line

y = mx+ c, we get that y2 = mx2 + c, so y2 ∈ K. Thus R is in E(K). In the case P = Q

we have the explanation as above that P + P = [0 : 1 : 0] in projective space.

Commutativity : All we need is to notice is that the line connecting P and Q is exactly

the same as the line connecting Q and P , so they give rise to the same R.

Identity : In projective space, this is ∞ = [0 : 1 : 0]. If we imagine the line connecting P

and ∞ intersecting E at a third point R, and then drawing the line connecting R and ∞,
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we will see that the two lines are the same, and so the line connecting R and ∞ intersects

the curve again at P , giving P ⊕∞ = P .

Inverses: if P = (x0, y0), we define −P = (x0,−y0). The line connecting these two points

is the vertical line through P (equivalently, the vertical line through −P ), which as we

have seen before intersects the curve again only in the projective case, at the point ∞.

Connecting ∞ to itself once again yields the degenerate line that is simply the point ∞,

which intersects E again only at itself.

Associativity : We omit this proof, owing to its cumbersome nature and irrelevance to

understanding elliptic curve cryptography. See [1], pages 20-32 for a full proof.

From here on we will refer to the group (E(K),⊕) simply as E(K) for the sake of brevity.

Calculating sums of points by finding secants every time can get a bit tiresome. Instead,

by breaking it down into specific cases and running through the steps, we can write a

fairly concise set of algebraic formulae. We take these from [1], page 14.

Group Law Formulae
Let E be an elliptic curve defined by y2 = x3 +Ax+B, and take two points P1 = (x1, y1)

and P2 = (x2, y2) on E. Then the following formula give the point P3 := P1⊕P2 = (x3, y3).

1. If x1 6= x2 then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m =
y2 − y1
x2 − x1

2. If x1 = x2 but y1 6= y2 then P1 ⊕ P2 =∞.

3. If P1 = P2 then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x21 +A

2y1

4. If P1 = P2 and y1 = 0 then P1 ⊕ P2 =∞.

An important operation on elliptic curves is taking a scalar multiple of a point P—that

is, for a given integer n, we take the point P and add together n copies of P . We denote

this nP . One simple method of calculating nP is the double-and-add method, which goes

as follows:

We take our number n and write its binary expansion: n = a0 + 2a1 + 22a2 + ... + 2nan

with ai ∈ {0, 1}. Then we use successive doubling to get 2P , 4P , ..., 2nP , and then add

up the appropriate terms. For small scalar multiplication, this doesn’t save much on the

computation of just adding up the point over and over again. However, the double-and-
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add method runs in time roughly log of the size of n, so for large enough n it becomes

more efficient than straight repeated addition.

2.3 Endomorphisms and the Structure of E(K)

Now that we know E(K) is a group, we can construct its endomorphism ring End(E).

We define (Ψ + Φ)(P ) = Ψ(P ) ⊕ Φ(P ) and (Ψ ◦ Φ)(P ) = Ψ(Φ(P )). Endomorphisms of

elliptic curves rational functions that map the identity to itself: that is, Ψ ∈ End(E) acts

on points P = (x, y) by Ψ(x, y) = (R1(x, y), R2(x, y)) for some raional functions R1 and

R2, and satisfies Ψ(∞) =∞.

As E comes equipped with the algebraic relation y2 = x3 + Ax + B, it is possible to

eliminate every appearance of y2 in both R1 and R2. This can also be used to remove

every power of y in the denominators of these functions, meaning we can write both of

them as R1(x, y) = r1(x)+s1(x)y and R2(x, y) = s2(x)+r2(x)y for some rational functions

ri, si.

Finally, as Ψ is a homomorphism, it preserves the group law on E. So,

(R1(x,−y), R2(x,−y)) = Ψ(x,−y) = −Ψ(x, y) = (R1(x, y),−R2(x, y))

This means that r1(x) − s1(x)y = r1(x) + s1(x)y, giving s1 ≡ 0. Also, s2(x) + r2(x)y =

−s2(x) + r2(x)y, giving s2 ≡ 0. This means any rational function on E can be written as

Ψ(x, y) = (r1(x), r2(x)y)

for ri rational functions of x alone. This argument closely follows [1], pages 50-51.

Every map in End(E) can be written as a pair of rational functions in this way. Conversely,

a pair of rational functions of this form is an endomorphism precisely when it maps ∞
to ∞. This might seem a tough ask for functions defined over the affine plane, but

homogenising them and looking to see where the point [0 : 1 : 0] goes under the new map

tests exactly this criterion.

Perhaps the most obvious example of an endomorphism of an elliptic curve is a scalar

multiplication map. For an integer m we denote this map [m]. When m > 0, this is just

the regular addition of m copies of P . When m < 0, we add up m copies of the point −P .

The endomorphisms [m] are useful because they allow us to count the m-torsion points

on our elliptic curve. This, in turn, tells us about the overall structure of the curve over

a finite field. However, to do this we need the notion of the degree of an endomorphism:
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Definition 2.7. Let Ψ be an endomorphism of an elliptic curve E. Writing Ψ(x, y) =

(p(x)/q(x), r2(x)y), we define the degree of Ψ (denoted deg(Ψ)) to be the maximum of the

degrees of p(x) and q(x) as polynomials.

Theorem 2.8 (The Parallelogram Identity). Let E be an elliptic curve over a field K.

Then the degree map deg : End(E)→ N satisfies the following for any Ψ,Φ ∈ End(E):

deg(Ψ + Φ) + deg(Ψ− Φ) = 2 deg(Ψ) + 2 deg(Φ)

See [22], page 60, for a proof. Using this, we can prove the following:

Proposition 2.9. Let E be an elliptic curve. Then deg([m]) = m2.

Proof. (From [22], page 62)

We prove this by induction on m.

m = 1 is easy, as [1]P = P = (x, y), which has degree 1 as r1(x) = x.

We assume the result for m > 1, and proceed using the parallelogram law:

deg([m] + [1]) = 2 deg([m]) + 2 deg([1])− deg([m]− [1])

deg([m+ 1]) = 2 deg([m]) + 2 deg([1])− deg([m− 1])

= 2m2 + 2− (m− 1)2

= m2 + 2m+ 1 = (m+ 1)2

completing the induction.

An important concept in the study of endomorphisms of elliptic curves is the notion of

separability. We will see that we can relate the size of the kernel of a separable endomor-

phism to its degree:

Definition 2.10. A polynomial g(x) ∈ K[x] is called separable if its derivative is not

identically zero. An endomorphism Ψ of an elliptic curve E over K is called separable

if, writing Ψ(x, y) = (p(x)/q(x), r2(x)y), at least one of p(x) and q(x) is separable as a

polynomial in K[x].
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Theorem 2.11. Let E be an elliptic curve over K, and let Ψ be an endomorphism of E.

If Ψ is separable then # ker(Ψ) = deg(Ψ). Otherwise, #ker(Ψ) < deg(Ψ).

For a proof, see [1], page 54.

Over a field of characteristic zero, all endomorphisms are separable. Over a field of char-

acteristic p, the inseparable endomorphisms are exactly with either the numerator or

denominator of r1 equal to a polynomial of the form g(xp
k
) for some g ∈ K[x], k ≥ 1.

This is because these are the only non-constant polynomials whose derivative is identically

zero.

Whether [n] is separable or not, it’s fairly easy to see that the number of n-torsion points

on an elliptic curve is at most n2. This is because the n-torsion points are exactly those

P ∈ ker([n]), and the size of this set is at most n2 by the previous theorem.

Using this fact, we can derive the structure of the group E(Fq). Understanding the

structure of this group is useful both in designing and trying to break elliptic curve cryp-

tography, as all standards in the field use an elliptic curve defined over Fq. Thus, it is

useful to know the following theorem:

Theorem 2.12. Let E be an elliptic curve over Fq. Then

E(Fq) ∼= (Z/n1Z)× (Z/n2Z)

where n1 | n2.

Proof. There are only finitely many points in F2
q , and E(Fq) ⊆ F2

q , so the group is finite.

Then the Fundamental Theorem of Finitely Generated Abelian Groups gives

E(Fq) ∼= (Z/n1Z)× (Z/n2Z)× ...× (Z/nrZ)

with n1 | n2, n2 | n3, ..., nr−1 | nr.

In Z/n1Z, every element is n1-torsion. As n1 | ni for all 1 ≤ i ≤ r, we also have n1 points

of n1-torsion in each of the Z/niZ. Overall this gives nr1 points of n1-torsion.

But we have shown that there are at most n21 points of n1-torsion, so we get nr1 ≤ n22,

meaning r ≤ 2.

From the definition of addition and multiplication of endomorphisms, it’s easy to see that

the map Z → End(E) given by m 7→ [m] is a ring homomorphism. Thus, we can think

of the endomorphism ring of any elliptic curve as containing a copy of the integers. For

some elliptic curves, this is the entire story. For others, though, we can find additional

endomorphisms.
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For elliptic curves over Fq, we can define the map φq(x, y) := (xq, yq). By Lagrange’s

theorem, kq−1 = 1 for all k ∈ F×q , so φq(x, y) = (x, y) for all (x, y) ∈ F2
q . Thus φq is an

endomorphism of any elliptic curve E(Fq), and we call it the Frobenius endomorphism.

The Frobenius endomorphism is inseparable, as the derivative of its x co-ordinate is

qxq−1 = 0, since q = 0 in Fq. From this it follows that φnq is inseparable over Fq for

all n ≥ 1.

However, the endomophism φnq − 1 is always separable (for details see [1],[5]). This is

useful, because it maps every point of E(Fqn) ⊂ E(Fq) to ∞ (and only the points of

E(Fqn)), so we get that #E(Fqn) = ker(φnq − 1) = deg(φnq − 1). Thus, knowing the degree

of φnq − 1 allows us to count the number of points on E(Fq).

We denote by t the number q+1−#E(Fq). It can be shown that the Frobenius endomor-

phism satisfies the polynomial equation φ2− tφ+q = 0—that is to say, the endomorphism

obtained by composing and adding the endomorphisms φ, [t] and [q] in this way is the

zero endomorphism.

Elliptic curves over finite fields always have an endomorphism ring larger than Z. The

two possible cases are (per [12]):

(i) End(E) ∼= OK , where K = Q(
√
D) for some D < 0.

(ii) End(E) ∼= O, where O is an order in a quaternion algebra. (For more information,

see [1], page 318)

We call case (i) the complex-multiplication (or CM) case, and case (ii) the supersingular

case. In the CM case, we can use group endomorphisms to speed up Pollard’s Rho algo-

rithm (see §4.1). We could theoretically do this in the supersingular case, but there are

better attacks for curves of this type (see §4.2.2).

To find these endomorphisms in the CM case, the question becomes how to calculate D.

We do this through the methods of algebraic number theory: OQ(
√
D) is the ring of integral

elements of the field Q(
√
D)—as such, every element in the ring satisfies a unique monic

polynomial of degree at most 2. In particular, if End(E) ∼= OK , φq satisfies φ2− tφ+q = 0

and so the image α of φq under this isomorphism satisfies α2 − tα + q = 0. Solving this

gives α =
t±
√
t2−4q
2 , so Q(

√
t2 − 4q) = Q(α) ⊆ Q(

√
D). If t2 − 4q isn’t a square of an

integer (and in the CM case, it never is), we have a field extension of Q of degree 2, with

a subfield also of degree 2. Thus the two fields must be equal, and so D is the squarefree

part of t2 − 4q.
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This gives us a simple (though sometimes computationally taxing) way of calculating D.

From there, it’s a short calculation to find the ring of integers of Q(
√
D) (see [24]):

OQ(
√
D) =

Z[
√
D] if D 6≡ 1 (mod 4)

Z[1+
√
D

2 ] if D ≡ 1 (mod 4)

One special type of endomorphism is an automorphism—an isomorphism of E(K) to

itself—which form a subgroup of End(E) denoted Aut(E). In order to find these, we need

teh following:

Definition 2.13. Let E be an elliptic curve over K in short Weirstrass form. We define

the j-invariant j(E) of E to be

j(E) = 1728
4A3

4A3 + 27B2

Using this, we prove:

Theorem 2.14. Let E : y2 = x3 +Ax+B and E′ : y′2 = x′3 +A′x′+B′ be elliptic curves

over K. Then E(K) ∼= E′(K) when j(E) = j(E′).

Proof. (Proof adapted from [5], page 47)

First we assume j(E) = j(E′). Equating j’s and rearranging gives A3B′2 = A′3B2. We

look for maps of the form (x, y) 7→ (µ2x, µ3y).

When A = 0 we have B 6= 0 (as ∆E 6= 0). We also have j(E′) = j(E) = 0, so A′ = 0 also.

This gives B′ 6= 0, and we set τ(x, y) = (µ2x, µ3y), where µ = (B′/B)1/6.

When B = 0 we have A 6= 0. We also have j(E) = j(E′) = 1728, giving B′ = 0 also.

Then A′ 6= 0 and we set τ(x, y) = (µ2x, µ3y), where µ = (A′/A)1/4.

When A,B 6= 0 we have A′, B′ 6= 0 also. Here we take µ = (B′/B)1/6 = (A′/A)1/4.

Through simple (but tedious, and thus omitted) calculations, one can verify that

τ(x, y) = (µ2x, µ3y) is a homomorphism of groups.

For injectivity, we note that τ acts on the projective version of the curve E by

τ([X : Y : Z]) = [µ2X : µ3Y : Z]. Then τ([X : Y : Z]) = [0 : 1 : 0] gives X = Z = 0 and

Y = 1/µ3. So ker(τ) = {[0 : 1/µ3 : 0]} = {[0 : 1 : 0]}.

For surjectivity, we take (x′, y′) lying on E′, i.e. y′2 = x′3 + A′x′ + B′. Dividing by µ6

we get
(
y′

µ3

)2
=
(
x′

µ2

)3
+ A

(
x′

µ2

)
+ B, meaning the point

(
x′

µ2
, y

′

µ3

)
lies on E. Thus τ is

surjective, and an isomorphism.
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This theorem holds in the other direction too: two ismorphic elliptic curves have the same

j-invariant (see [5], page 45 for a proof). Then for a general elliptic curve, we have the

following:

Proposition 2.15. Let E be the elliptic curve y2 = x3 +Ax+B over K. Then

(i) If A,B 6= 0, we have Aut(E(K)) ∼= Z/2Z

(ii) If A = 0, we have Aut(E(K) ∼= Z/6Z

(iii) If B = 0, we have Aut(E(K)) ∼= Z/4Z

Proof. An ismorphism of E to itself is given by a map (x, y) 7→ (µ2x, µ3y), where A = µ4A

and B = µ4B.

When A,B 6= 0, this reduces to µ2 = 1, giving two choices for µ ∈ K (in fact, µ = ±1).

Then |Aut(E)| = 2, and so is cyclic of order 2.

When A = 0, we must have B 6= 0, so all automorphisms of E are determined by µ6 = 1.

This gives six choices, and choosing a µ ∈ K such that µ2, µ3 6= 1 we see that Aut(E) is

cyclic of order 6.

When B = 0, we must have A 6= 0, so all automorphisms of E are determined by µ4 = 1.

This gives four choices, and like before we can choose a µ ∈ K such that µ2 6= 1, giving

us that Aut(E) is cyclic of order 4.

3 Elliptic Curve Cryptography

3.1 Discrete Logarithms in E(K)

Recall, the discrete logarithm problem for Z/pZ is the task, given two integers x and y, of

finding a k ∈ Z such that xk ≡ y (mod p). This problem can also be studied in the finite

group E(Fq) for an elliptic curve E and finite field Fq. Instead of powers of integers, we

take multiples of points on the curve.

Like the discrete logarithm problem for integers, the elliptic curve discrete logarithm

problem (or ECDLP) is assumed to be difficult to solve in general. Methods like Pollard’s

Rho algorithm (§4.1) can find discrete logs for any group G, but this runs in O(
√

#G),

which can be infeasible for large #G. To date, nobody has found a sub-exponential time

algorithm that solves this problem.

There are methods for breaking the discrete logarithm problem on some special elliptic

curves, which take advantage of extra structure inherent in their associated groups. For ex-
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ample, curves defined over fields of characteristic 2 were considered a good cryptographic

standard because their extra structure allowed for fast point arithmetic. However, the

attack presented in [20] weakens the discrete logarithm problem on these curves signifi-

cantly. Consequently, these “binary curves” have fallen out of favour in the cryptographic

community, being mostly replaced by curves over fields of large prime order.

3.2 The ECDSA

The elliptic curve digital signatre algorithm (or ECDSA) is a cryptographic protocol that

allows a user to digitally sign a file in such a way that it is easy to verify the signature

but hard to reverse-engineer the information required to generate said signature. In this

implementation, we will describe how one user Alice can use an elliptic curve over a prime

field to provide a digital signature to another user, Bob. This version of the algorithm is

adapted from [2], page 135.

The ECDSA

Suppose Alice wants to digitally sign a message m. She and Bob agree publicly on an

elliptic curve E over a finite field and a base point P of order q. As the ECDSA is a form

of public key encryption, Alice has to release public information. In this case, she chooses

a random integer x in the interval 1 < x < q − 1 and releases the point Q = xP pubicly.

To sign a message, Alice does the following:

1. She selects a random integer k in the interval 1 < k < q − 1.

2. She computes kP = (x1, y1) and r = x1 (mod q). If r = 0, she returns to step 1.

3. She computes s = k−1(m+ xr) (mod q). If s = 0, she returns to step 1.

4. Alice releases the pair (r, s) as the signature for the message m.

To verify a signed message, Bob does the following:

1. He computes u1 = ms−1 (mod q) and u2 = rs−1 (mod q).

2. He computes u1P + u2Q = (x0, y0) and v = x0 (mod q).

3. Bob accepts the signature if v = r.

We now prove that the signature is valid, i.e. that someone with the knowledge of Alice’s

secret key, sent the message:
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Proof. Using the process as above, Bob calculates

u1P + u2Q = ms−1P + rs−1Q

= m(k−1(m+ xr))−1P + r(k−1(m+ xr))−1Q

= k(m+ xr)−1(mP + xrP )

= k(m+ xr)−1(m+ xr)P

= kP

And so the two points will have the same residue modulo q, namely r.

In this proof, we’ve implicitly used various facts, such as nP + mP = (n + m)P and

n(mP ) = m(nP ). These are all true, of course, and their proofs are simply routine checks

using the fact that E(Fpn) is a finite abelian group.

These calculation show that a digital signature is verifiable, and given ECC takes place

over fields for which q is extraordinarily large, the odds of a randomly chosen point also

giving the same residue modulo q are miniscule.

Let’s say we want to attack this encryption method to try and fake a signature from Alice.

We obtain from Alice a signature pair (r, s) for a message m. Can we combine this with

the public information (q, P and Q) to convincingly fake future signatures from Alice?

This is equivalent to asking if, for any message m, we can come up with a pair (r, s) that

satisfies the calculation Bob will do. One method of doing this is to know Alice’s private

key, that is, the number x such that Q = xP , and calculating this is exactly the discrete

logarithm problem for E(Fpn).

All other methods that might reverse the calculations done rely on knowing at least one

of the random numbers k and x. If k is known, then kP can be calculated, and x can be

calculated using the original message from Alice and the calculation in step 3. However,

this again requires us to solve the discrete logarithm problem, this time for kP . Either

way, faking signatures from Alice requires an attacker to either brute force their way to

Alice’s private key by checking nP for all n, or solving the discrete logarithm problem.

This is the crux of the encryption system the ECDSA puts in place. The discrete logarithm

problem is assumed to be difficult to solve—though it is not known if it truly is. In this

setting, Pollard’s Rho algorithm runs in O(
√
q), so all an implementor has to do to make

this a useless avenue of attack is choose a large enough q.

Note, it is crucial that the value k is chosen randomly for each new signature. If an

attacker knows that the same value of k has been used for two messages, they can extract

Alice’s private key as follows:
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Suppose an attacker has two messages m1 and m2, with respective signatures (r1, s1) and

(r2, s2). The si are calculated by si = k−1(mi + xri) (mod q), so subtracting the two

sequations gives

s1 − s2 = k−1(m1 −m2 + x(r1 − r2)) (mod q)

However, as the ri are calculated using the same k, they are the same, so we can rearrange

to give

k =
m1 −m2

s1 − s2
(mod q)

Once k has been extracted, it is a short calculation to give x = r−11 (ks1 −m1) (mod q).

While this is only the residue of Alice’s private key modulo q, it is enough for forging

signatures from Alice as all the calculations in the algorithm are done modulo q anyway.

3.3 Secp256k1: The Bitcoin Curve

The elliptic curve used to sign Bitcoin transactions is called Secp256k1 (see [10]), and is

defined as follows:

Definition 3.1. The curve Secp256k1 is defined by the equation y2 = x3 + 7 over the field

Fp, where p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

We note the base point of the curve only for the sake of completeness—it is rather long

and doesn’t do much for our edification:

(55066263022277343669578718895168534326250603453777594175500187360389116729240,

32670510020758816978083085130507043184471273380659243275938904335757337482424)

Over the real numbers, Secp256k1 looks like this:

−4 −2 2 4

−4

−2

2

4

Figure 3: y2 = x3 + 7 over R
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Elliptic curves over finite fields look very different to their counterparts over R. As the

value of p used for Secp256k1 is rather too large for a plot on a piece of A4 paper, below

is a plot of y2 = x3 + 7 over a smaller field:
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Figure 4: y2 = x3 + 7 over F127

We can still visualise the group law in this setting5. If we draw secant lines between points

and allow ourselves to “wrap around” the sides of the F2
p plane (in much the same way

that residues of integers “wrap around” modulo n), we will find exactly one more point

of intersection with the curve. In order to finish we need to reflect across the x-axis, but

again imagining wrapping around, this is the same as reflecting through y = p/2.
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Figure 5: A visualisation of (1, 32)⊕ (24, 78) = (106, 12), on y2 = x3 + 7 over F127.
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Secp256k1 was designed by the United States Government’s National Institute of Stan-

dards and Technology (or NIST). As such, the choices behind its various constants are not

publicly known in great detail. The specific choice of the base point, for example, is not

well-understood. However, the choice of prime is a fairly reasonable one.

The prime p used in Secp256k1 is what’s called a pseudo-Mersenne prime, meaning it is

composed of one large power of 2 and several small powers of 2. This is useful, because

it can be leveraged when implementing Secp256k1 to calculate reduction modulo p much

faster than the standard method of repeatedly peeling off copies of p until a number in

the range [0, p − 1] is found. One algorithm that does this is the Solinas algorithm [21],

which can be used since 232 + 29 + 28 + 27 + 26 + 24 + 1 is small relative to 2256.

3.4 Other Cryptographic Curves

Secp256k1 is not the only curve widely used in current elliptic curve cryptography. The

NIST detailled several recommended standard curves and associated fields in 1999 [17].

Ostensibly, these curves were chosen for their cryptographic security and computational

efficiency. However, some cryptographic tools touted as secure standards by the NIST

have been shown in recent years to have been weakened by the National Security Agenecy

(NSA). In 2013, the New York Times reported that certain aspects of the Dual EC DRBG

random number generator had been deliberately influenced to provide a backdoor to the

NSA [18].

This random number generator was used to create private and public keys, so its security

underlies the security of the encryption. A random number generator that is secretly

deterministic in some way could be leveraged to provide a far smaller pool of potential

private keys to an attacker, which could then be manually checked. Because of this

backdoor, implementors of elliptic curve cryptography have become increasingly wary of

cryptography standards put forward by the NIST.

This distrust has led to a rise in popularity of curves created by non-governmental organi-

sations, and often even individuals. One such curve is Curve25519, published by Daniel J.

Bernstein in [5]. The detail with which the various choices around the curve are explained

has led many to trust that no backdoors have been inserted into it, as the various param-

eters as well as the structure of the curve were all chosen with an eye towards efficiency

and security in practical implementations of the encryption protocol. This does not mean

backdoors have not been inserted, rather it just makes it much less likely. If nothing else

does, the detail present in [5] makes it clear that choosing a curve that provides secure

ECC is a non-trivial task.
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4 Implementing ECC

The main advantage of implementing the ECDSA over standard RSA-based digital signa-

tures is that ECC offers approximately double the security of RSA methods with private

keys of the same length. However, this theoretical increase in security requires that the

implementor understand the mathematics of the elliptic curves well.

As well as allowing one to weaken the ECDLP, understanding the mathematics of elliptic

curves can allow a designer to make the implementation of the encryptions run more

efficiently than the naive approach.

4.1 Pollard’s Rho Algorithm

Pollard’s Rho algorithm [7] can be used to find discrete logarithms in the group E(K) of

an elliptic curve E. If we want to find a k ∈ N such that kP = Q, Pollard’s Rho algorithm

gives integers a, b, c, d such that

aP + bQ = cP + dQ

which is equivalent to saying

(d− b)Q = (a− c)P ⇒ Q = (a− c)(d− b)−1P

where (d − b)−1 is the inverse of d − b modulo #E(K) (note, this may not always exist,

see below).

The algorithm goes as follows (per [1], page 148): To set up, we divide E(K) into subsets

of roughly the same size, S1, S2, ..., Ss, and choose a pair of random integers ai and bi

modulo |E(K)| for each Si. We calculate the points Mi = aiP + biQ, and define the

function f(R) = R+Mi when R ∈ Si.

To execute, we take our point P and calculate P0 = a0P + boQ, where again the a0

and b0 are random integers. Then we calculate Pk+1 := f(Pk). As G is finite, this pro-

cess will eventually give integers i0 < j0 such that Pi0 = Pj0 . From here, the sequences

Pi0 , f(Pi0), f(f(Pi0)), ... and Pj0 , f(Pj0), f(f(Pj0)) are the same, meaning the overall se-

quence is eventually periodic. This is where the algorithm gets its name, due to the

resemblance of this process to the Greek letter ρ.

At each step, we keep a note of the expression Pk = ukP + vkQ in the vector (uk, vk).

If Pk ∈ Si, we have Pk+1 = ukP + vkQ + aiP + biQ = (uk + ai)P + (vk + bi)Q, so

(uk+1, vk+1) = (uk+ai, vk+bi). Checking each new point against our list, we will eventually

find a pair (ui, vi) = (uj , vj). This corresponds to the relation uiP + viQ = ujP + vjQ
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which is exactly as we require. Inverting the value ui − uj may not always be possible,

as it could divide the order of the group n = |E(K)|. If it does, all the factors peii that

ui−uj shares with n must be divided out of n, giving the inverse modulo d = pe11 · ... · perr .

From here, one simply checks each of the d possibilities for k modulo n.

Pollard showed in his original paper that the algorithm will run with time complexity√
πp/2 on average, where p is the order of the base point of the curve. The algorithm is

probabilistic, meaning it could actually take much longer than this.

The Rho algorithm can also be adapted to run over equivalence classes in the group, rather

than the points themselves. The idea here is to speed up the algorithm by checking if a

point in the walk is equal to any of the previous points, as well as points equivalent to

them. This extra check takes slightly longer, but overall we can reduce the number of steps

in our random walk. This provides an overall saving in the time complexity as checking

if two points lie in the same class is much less computationally intensive than addition in

the group E(K).

If we can split E(K) into m equivalence classes, the algorithm can be made to run with

time complexity
√
πp/2m (see [9] for details). One such equivalence relation that yields

fast checking of equivlanece classes is defining P ∼ Q ⇔ τ(P ) = Q, where τ is an

automorphism of the group.

This can be applied to the curve Secp256k1. From Proposition 2.13, we know the curve

has an automorphism group isomorphic to Z/6Z, generated by τ((x, y)) = (ζx,−y). In

order to get the required speedup, we want ζ ∈ Fp. If it’s not in Fp, the best speedup we

can get is by using the automorphism (x, y) 7→ (x,−y), as all other automorphisms will

give points in the algebraic closure that won’t be come across in the Rho algorithm.

We can check if there is such a ζ ∈ Fp, where p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1,

using SageMath. We define the field of size p, and ask for the roots of the polynomial

x3 − 1:

sage: K.<x> = GF(2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1 )[]

sage: f = x^3-1

sage: f.roots()

which returns

[(6019751358898630255448558202488507510888403245095233981767907202616622\

8089408, 1),

(55594575648329892869085402983802832744385952214688224221778511981742606\

582254, 1), (1, 1)]

Sage returns the roots in the form (α, λ), where α is the root and λ is its multiplicity. In

this case we have three roots each of multiplicity one.
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Setting ζ1 = 6019751358898630255448558202488507510888403245095233981767907202616622

and ζ2 = 55594575648329892869085402983802832744385952214688224221778511981742606,

we have the two automorphisms of Secp256k1 given by

τ1((x, y)) = (ζ1x,−y), τ2((x, y)) = (ζ2x,−y)

We could also use the automorphism for the third root, but since this third root is 1

we would only get (x, y) 7→ (x,−y), which has order 2 and therefore provides less of a

speedup.

Comparing the speed of Rho over the group with the speed of Rho over the equivalence

classes provided by one of the τi, we can see the algorithm is only faster by a factor of√
6 ≈ 2.45. Given the private keys used in Secp256k1 are 256 bits long, this factor does

not weaken the discrete log problem sufficiently to render the encryption useless. In the

worst case scenario, it makes the security equivalent to keys of length 254 bits, which

would still take an infeasible amount of time to break.

4.2 Other Attacks

Pollard’s Rho algorithm is the best-general purpose attack on the ECDLP. However, there

exist specialised attacks for curves with particular propoerties.

4.2.1 Pohlig-Hellman

Elliptic curve cryptography is done in the group E(Fq), but strictly it takes place in the

group 〈P 〉, with P is the base point of E specified in the encryption. Every implementation

of ECC uses a point of prime order, but this isn’t actually required for the algebra to still

work. The reason a point of prime order is always required is because a non-prime order

significantly weakens the discrete logarithm problem on the elliptic curve:

Setting ord(P ) = n = pe11 · ... · perr , kP = Q, and writing k = k + rpeii we can see that

k
n

peii
P =

kn− rpeii n
peii

P

=
n

peii
kP − rnP

=
n

peii
Q

Thus k = k (mod peii ) can be calculated by solving a discrete log in a cyclic group of order

peii . When ei > 1 the value of k can be found by first finding the discrete log in a cyclic
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group of order pi, then lifting the value to (mod peii ).

Finally, the values of k can be combined to give k modulo n using the Chinese Remainder

Theorem. As (k + rn)P = kP , this gives the discrete logarithm.

This is called the Pohlig-Hellman attack (see [13]), and it reduces the problem of finding

a discrete logarithm of a point to finding discrete logarithms modulo the prime factors of

the group. This can be used in conjunction with Pollard’s Rho algorithm to find discrete

logs wth time complexity equal to the square-root of the largest prime factor of the base

point’s order.

In all cryptographic applications, then, it is highly recommended to choose a base point

whose order is a prime. This prevents the Pohlig-Hellman algorithm from providing any

speedups to Pollard’s Rho, effectively thwarting this attack. Secp256k1 has a base point

of prime order, rendering this attack useless for breaking the security of Bitcoin.

4.2.2 Transfer Attacks

Understanding the structure of the group E(K) is useful when trying to solve the discrete

logarithm problem. Most current instances of ECC use curves defined over a prime field,

so we will focus on transfers of this kind.

A transfer is simply a map from the group E(Fp) to a group where solving the discrete

logarithm is faster than using an algorithm like Pollard’s Rho. If we can find such a map,

it would make the discrete logarithm problem much easier to solve.

To know where we can map our group E(Fp), we first need to know its order. Calculating

the trace t of the Frobenius endomorphism, we have that #E(Fp) = p+ 1− t. In the best

case scenario (from an attacker’s perspective), we have that t = 1 and so #E(Fp) = p, and

we can perform an additive transfer into the group (Fp,+). This allows for the discrete

logarithm problem to be solved in linear time. This was first proposed by Smart in [14].

If #E(Fp) 6= p, we find the smallest k such that #E(Fp) | (pk − 1). This k is called the

embedding degree of the group E(Fp). From here, we can then map our group into the

multiplicative group (Fpk)×. Here the problem is solved in sub-exponential time using

index calculus. This is called the MOV-attack, and was first proposed in [15].

The larger k is, the more cumbersome the process of finding a discrete logarithm in (Fpk)×

becomes. There are various opinions on what constitutes a large enough embedding degree

to render the discrete logarithm problem for a specific E(Fp). [10] states that k should be

at least 20, whereas [11] puts the minimum value of k at
#E(Fp)−1

100 .

If E(Fp) is supersingular then t = 0 for p ≥ 5 (see [1], page 135), and so the group order

is p+ 1. This is a divisor of p2− 1, giving a multiplicative transfer of degree 2 into (Fp2)×.

This breaks the ECDLP much faster than Pollard’s Rho algorithm.
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But is Secp256k1 safe from a transfer attack? The smallest k such that #E(Fp) | (pk − 1)

is exactly the multiplicative order of p modulo #E(Fp). Using Sage, we can calclate this:

sage: p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1

sage: E = EllipticCurve(GF(p),[0,7])

sage: n = E.order()

sage: mod(p,n).multiplicative_order()

which returns

192986815395526992372618308347813179754729273798458173971008605235863602\

49056

Certainly this is larger than 20, and in fact it is equal to n−1
6 , so it satisfies the conditions

of both [10] and [11]. To carry out a transfer attack against Secp256k1, one would have

to work in a field of size approximately 1010
78

, which seems somewhat infeasible.

4.3 Montgomery Curves

In 1987, Peter L. Montgomery propsoed implementing elliptic curve encryption over a

type of curve now called a Montgomery curve in his honour. The main advantage of

Montgomery curves is that they admit formulae for point addition that is generally much

faster than those for curves in short Weirstrass form.

Definition 4.1. A Montgomery curve E is a plane cubic curve given by

By2 = x3 +Ax+ x

with B(A2 − 4) 6= 0.

The condition B(A2 − 4) 6= 0 ensures this defines an elliptic curve, meaning the standard

group law given by taking the sum of three co-linear points to be∞ holds here too. Notice

as well, there is no linear y term, meaning inverting a point is still just flipping it across

the x-axis, as in the short Weirstrass case.

The formulae take a point P = (x1, y1) and calculate (n+m)P . To do this, we write the

point P in projective co-ordinates: P = [X1 : Y1 : Z1], with x1 = X1
Z1

and y1 = Y1
Z1

. Then

writing tP = [Xt : Yt : Zt] and, we have the formulae [8]:

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2

Zm+n = Xm−n((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))2
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when m 6= n. When m = n, we have

4XnZn = (Xn + Zn)2 − (Xn − Zn)2

X2n = (Xn + Zn)2(Xn − Zn)2

Z2n = 4XnZn

(
(Xn − Zn)2 +

A+ 2

4
4XnZn

)

Initially these don’t seem that useful, as we need to know the difference of the two points

at every step. Calculating this before calculating the sum of the two points negates any

speedups we might hope to get from these formulae, but if we choose m and n differing by

1, we always get differences of X1 and Z1. Notice, these formulae don’t calculate either

of y2n or Y2n at any step—however, this is not needed for the ECDSA as only the x co-

ordinate is used in the algorithm. For variants of ECC where the y co-ordinate is needed,

there exist simple methods for recovering this information [19].

Performing divisions in Fp on a computer takes approximately four times longer than

performing multiplications, and these formulae only use multiplications and additions

(with additions being even faster than multiplications). The standard group law formulae

use several divisions, meaning the Montgomery addition formulae should run much faster

if correctly implemented.

This is done by chaining them together to form what’s called the Montgomery ladder,

which can be used to calculate nP . The algorithm for doing this goes as follows:

First, we write n in the form of a binary expansion. That is, n = a0+2a1+22a2+...+2rar.

Then we perform the following (from [3], page 287):

Algorithm 1 Montgomery’s Scalar Multiplication Ladder

1: P1 ← P and P2 ← 2P
2: for i = l − 1 down to 0 do
3: if ni = 0 then
4: P1 ← 2P1 and P2 ← P1 ⊕ P2

5: else
6: P1 ← P1 ⊕ P2 and P2 ← 2P2

7: return P1

At each step, P2 − P1 is always P , up to sign. We can see this by checking at the start

that 2P − P = P , and then noticing that at every step we are replacing P1 and P2 with

points whose difference is still P1.

The Montgomery Ladder provides faster calculations when n > 2, as we only need to

perform one division at the end, when we leave projective space. All the rest of the work

is done with addition and multiplication.
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The Montgomery ladder is incredibly useful if your curve has the shape By2 = x3+Ax2+x,

but many of the curves used in modern elliptic curve cryptography are not. Most of them,

including Secp256k1, come in short Weirstrass form. Over fields not of characteristic 3,

we can transform a Montgomery curve into a short Weirstrass curve by dividing by B and

depressing the resulting monic cubic in x to get rid of the x2 term. However, if we want

to use these formulae to speed up calculations for a short Weirstrass curve, we want to be

able to go in the other direction.

A curve y2 = x3 + Ax+B over Fp can be transformed into a Montgomery curve over Fp
exactly when:

(i) x3 +Ax+B has at least one root α in Fp

(ii) 3α2 +A is a square in Fp

as per page 286 in [3].

This kind of equivalence is called birational equivlanece, and it doesn’t always hold. We

might hope, for example, that Secp256k1 can be transformed into a Montgomery curve in

order to speed up the calculations used for signing Bitcoin transactions. We elaborate on

the specific calculations in Appendix A, as they are rather cumbersome.

In essence, we first want to check if x3 + 7 factors. We do this with the Sage commands

in Appendix A, which show it does not. In order to turn Secp256k1 into a Montgomery

curve, then, we would first need to work over the field Fp3 , where y2 = x3 + 7 factors. If

we wished to proceed from here, in spite of the size of the underlying field spiralling out

of our control, we would then have to check whether each 3α2 is a square in Fp3 (for α a

cube root of -7 in Fp3).

Again appealing to Appendix A, we see that 3α2 is not a square for each α a root of

x3 + 7 over Fp3 , meaning to convert Secp256k1 into a Montgomery curve, we would have

to work over the field Fp6 . This field is of size approximately 10462, and consists of degree

5 polynomials over Fp, making the calculations much more cumbersome than any saving

we might make from working with a Montgomery curve.

This seems unfortunate, and we might wonder how likely it is that a given elliptic curve

over a finite field might be “Montgomerisable” in this way. To check this, I wrote a short

program in Sage that returns the degree of the smallest field extension required to turn a

Weirstrass curve into a Montgomery curve. This can be found in Appendix B, as well as

code that checks this function for all possible elliptic curves over all prime fields up to a

certain size.
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Over the first 50 prime fields, I found the following:

n 1 2 3 6

Proportion 125097
379084

253563
758168

108401
758168

73005
379084

Approx. Percentage 32.99 33.44 14.29 19.25

where n is the degree of the smallest extension Fpn such that a short Weirstrass curve over

Fp is “Montgomerisable” over it. For the first 758168 elliptic curves, the proportion and

corresponding approximate percentage of curves that require a degree n extension is given

by the table. While the sample size is fairly small, these results still seem to suggest we

were somewhat unlucky when it comes to the “Montgomery degree” of Secp256k1.

Given the curve’s failure to be easily transformable into a Montgomery curve, we are

forced to look elsewhere for ways of speeding up its calculations.

4.4 Scalar Multiplication with Endomorphisms

Following [16], let E be an elliptic curve over a prime field Fp, and let P ∈ E(Fp) be a

point of prime order n. Every endomorphism φ ∈ End(E) has a characteristic polynomial

of degree 2, meaning φ2 + αφ+ β = 0 for some α, β ∈ End(E). If this polynomial has the

factor (φ− λ) modulo n for some λ ∈ Z, then φ acts like [λ] on the points 〈P 〉.

If this endomorphism is easy enough to compute, it can be used to speed up scalar multi-

plication of points in 〈P 〉. We do this as follows: to calculate kP , we find a representation

k = k1 + k2λ (mod n) with k1, k2 ∈ [0,
√
n]. This gives us

kP = k1P + k2λP

= k1P + k2φ(P )

Provided finding this representation of k is not computationally taxing (which it tends

not to be), we can calculate kP by doing two scalar multiplications of shorter bitlength

than k and one evaluation of φ. A more thorough analysis of why this works, as well as

an algorithm for computing k1P and k2φ(P ) simultaneously, can be found in [16].

What does all this mean for Secp256k1? Secp256k1 has an endomorphism group isomor-

phic to Z
[
1+
√
−3

2

]
, with the automorphisms τ1 and τ2 of order 6 (§4.1). These automor-

phisms are efficiently computable, as they use only two reductions modulo p. As per [16],

these methods can speedup scalar multiplication by about 50% for fields of bitlength 160.

This ratio gets better as the size of the field gets larger, and Secp256k1 being defined over

a field of bitlength 256 means the time saved should be at least as much as 50%.

27



5 Conclusion

5.1 Is Secp256k1 a Good Choice?

Given the numerous possible attacks on ECC and their varied nature, it’s clear that a curve

and field chosen completely at random have little chance of providing secure encryption,

and even if they do they stand little chance of having the required properties to provide

faster computation methods on top of that. Then to get anything useful done with ECC,

we have to rely on the standards set out by the experts.

The question for anyone attempting to implement ECC then becomes, how much should we

trust the standard curves? Given the accusations by some that the NSA has intentionally

weakened some of the NIST’s cryptographic standards, taking it on blind faith that the

encryption standards put forward by anyone can be trusted seems ludicrous. The budding

cryptographer, then, has to take the time to understand the mathematics behind ECC

and evaluate for themselves whether a given standard should be trusted.

From the mathematical perspective, there is nothing to suggest Secp256k1 is a bad choice

for ECC. It resists Pollard’s rho attack (even with speedups from its additional automor-

phisms), and has an embedding degree that would make a transfer attack take longer than

the age of universe.

From the perspective of a paranoid cryptographer, though, it might not. If it, too, was

weakened under influence from the NSA, it could provide the United States Government

with a means of reading and forging private communications from people all over the

globe. This is an especially troubling notion for Bitcoin, as it was designed to be free from

influence and interference from any outside power.

Given that the NIST hasn’t released detailled information about why the specific con-

stants associated with the curve were chosen (and noting their previous association with

weakening encryption standards for the NSA), many think curves like Secp256k1 may have

also been tampered with, and that they should be avoided if possible.

Barring further Snowdon-eqsue leaking of classified government material, we will likely

never know for sure whether this is true. In general, then, it seems a better idea to use

curves like Curve25519, which have a detailled analysis of the decision-making process

behind them publicly available. The odds are far slimmer that these curves have been

designed maliciously.

The odds of getting enough of the Bitcoin userbase to switch, though, are equally slender.

Given the number of people using the currency, it would likely take irrefutable proof of

malfeasance to get enough users to switch from the system that has been working fine for

them so far. This means anyone hoping to invest in Bitcoin more or less has to take it on

faith that the security has not been tampered with in any way.
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5.2 The Future of ECC (and Bitcoin)

The most dangeorus thing about ECC seems to be the variance in the dificulty of the

discrete logarithm problem over all curves and fields. The level of mathematical knowledge

required to verify the security of a randomly chosen curve over a randomly chosen field

can be non-trivial, and with more and more money riding on the effectiveness of ECC,

there will only be more attempts to undermine it in future. There is currently nothing

to suggest ECC will become obselete overnight, but there is also nothing to suggest it

won’t. It is entirely conceivable someone is working on an attack that will undermine vast

swathes of the current standards.

The job of designing an elliptic curve for cryptographic purposes is already a hard needle

to thread; if new attacks are found that make this job even harder, we may see ECC wane

in popularity. Its popularity is already starting to wane, due to its theoretical breakage

under the power of quantum computing. Although quantum computers do not currently

exist in a state capable of breaking ECC, it is conceivable that they will eventually, and so

attention is increasingly turning to quantum-resistant encryption methods such as lattice-

based methods and the Lamport scheme.

For now, though, the technology seems reasonably secure. If quantum computers arrived

tomorrow, they would also break traditional RSA methods of encryption. Given this

underpins much of the global banking and financial systems, we would have far bigger

problems on our hands than Bitcoin transactions becoming untrustworthy.

Assuming no grand changes in the cryptographic landscape, the future of Bitcoin is still a

mystery to more or less everyone. There are many who claim to know where the currency

is headed, but for every expert touting one opinion as fact, there is another arguing for

exactly the opposite view. Time and again Bitcoin has defied the expectations of many,

so it seems Bitcoin will follow the golden rule of new technology: precious few people will

predict its journey correctly, and those who claim to be able to likely have a vested interest

in the outcome.

5.3 Final Thoughts

When most people hear about potential weaknesses in the encryption that governs their

internet traffic, they get worried and start unplugging the wireless router. Similarly,

possible weaknesses in the ECDSA for Secp256k1 could have serious ramifications for the

future of Bitcoin. And while the standard seems safe enough for now, computers will grow

in power. If Moore’s Law of doubling computer power is to be trusted, eventually we

will be able to solve the ECDLP even for Secp256k1. This is not news to anyone using

Bitcoin, and there’s a good few years before classical computers become powerful enough

to do this.
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So, essentially, Bitcoin is safe for now. The cultural inertia of its userbase may prove to

be its fatal flaw, however, as recent news has shown the Bitcoin-owning population to be

a hard beast to control. For evidence of this, one has to look no further than the littany

of diverging Bitcoin standards (called “forks” in the parlance) that are cropping up with

alarming frequency [23].

And while the failure of Secp256k1 would drastically affect the stability of Bitcoin’s price,

the reverse picture doesn’t hold. That is to say, just because it’s safe, it doesn’t mean it’s

stable. In researching this project, I’ve come across a certain amount of ancillary material

about the behavoir of the price of Bitcoin, and from it I’ve drawn the following conclusion:

it is possible to get rich using Bitcoin, if you invested eight years ago.
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Appendix A Attempting to “Montgomerise” Secp256k1

We take Secp256k1, the curve y2 = x3 + 7 defined over the field Fp (with p = 2256− 232−
29 − 28 − 27 − 26 − 24 − 1). We first show that −7 is not a cube in this field. We define

the polynomial

sage: R.<x> = GF(2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1 )[]

sage: f = x^3+7

sage: f.roots()

This returns the empty array, meaning x3 + 7 doesn’t factor over this field.

This already looks pretty bad for “Montgomerising” Secp256k1, but it is possible we would

have to work over an even bigger extension. To satisfy the second criterion, we need to

check whether any of these roots correspond to squares in Fp3 . So, we define the field

Fp( 3
√
−7) ∼= Fp3 in Sage, and ask for the roots again:

sage: p=2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1

sage: K.<crm7>=GF(p**3,modulus=(x^3+7))

sage: R.<t>=PolynomialRing(K)

sage: f=t^3+7

sage: f.roots()

This returns

[(6019751358898630255448558202488507510888403245095233981767907202616622\

8089408*crm7, 1),

(5559457564832989286908540298380283274438595221468822422177851198174260\

6582254*crm7, 1),

(crm7, 1)]

where “crm7” is 3
√
−7, a root of x3 + 7. Each of these is an α for which we need to check

whether 3α2 + A is a square in Fp3 . For Secp256k1, A = 0, so we only need check each

3α2.

The relevant Sage commands are:

sage: g1=t^2-3*(60197513588986302554485582024885075108884032450952339817

679072026166228089408*crm7)^2

sage: g1.roots()

which returns no roots;

sage: g2=t^2-3*(55594575648329892869085402983802832744385952214688224221

778511981742606582254*crm7)^2

sage: g2.roots()
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which returns no roots, and

sage: g3=t^2-3*crm7^2

sage: g3.roots()

which also returns no roots.

None of these polynomials have roots, so each 3α2 is not a square in Fp3 . This means we

would have to adjoin one of these square roots in order to fully “Montgomerise” Secp256k1.
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Appendix B Weirstrass To Montgomery Sage Code

The following Sage code defines the function that determines the lowest degree field exten-

sion required to transform a Weirstrass curve f over the field of size p into a Montgomery

curve:

def monty(f,p):

A=f.list()[1]

B=f.list()[0]

R.<x>=GF(p)[]

if factor_degree(f.roots())==1:

g=x^2-(3*f.roots()[0][0]^2+A)

if g.roots()!=[]:

return 1

else:

return 2

elif factor_degree(f.roots())==3:

for i in range(len(f.roots())):

g=x^2-(3*f.roots()[i][0]^2+A)

if g.roots()!=[]:

return 1

else:

return 2

else:

Field3.<alpha>=GF(p**3,modulus=(f))

Ring3.<t>=PolynomialRing(Field3)

h=t^3+A*t+B

for i in range(len(h.roots())):

g=t^2-(3*h.roots()[i][0]^2+A)

if g.roots()!=[]:

return 3

return 6

This uses the function factor degree, which counts the number of roots of the polynomial

over the field Fp with multiplicity. This isn’t hard to write; I include mine only for the

sake of completeness:
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def factor_degree(A):

r=0

for j in range(len(A)):

r=r+A[j][1]

return r

This code is written to be utilised as in the following example:

sage: R.<x>=GF(31)[]

sage: monty(x^3+2*x+5,31)

which returns a value of 2. In this case, the extension is F31(α) ∼= F312 , where α is a root

of x2 + 15x+ 10.

I also wrote a program that iterates over the function monty(f,p), checking every possible

elliptic curve over a finite field:

def monty_stats(prime):

R.<x>=GF(prime)[]

results=[0,0,0,0,0,0,0]

baddies=0

for i in range(0,prime):

for j in range(0,prime):

poly = x^3+i*x+j

if prime.divides(4*i^3+27*j^2):

baddies=baddies+1

else:

if monty(poly,prime)==1:

results[1]+=1

elif monty(poly,prime)==2:

results[2]+=1

elif monty(poly,prime)==3:

results[3]+=1

elif monty(poly,prime)==6:

results[6]+=1

else:

print "Error in executing monty(x^3+" +

str(i) + "*x+" + str(j) + "," + str(prime)

+ ")---No possible extension found."

return results
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It seems for every prime p, the number of curves defined by x3 + ix + j that aren’t an

elliptic curve is exactly p. This is true at least for all primes up to p50 = 229, which is as

far as my statistical analysis went (anything further might have melted my laptop!), so I

assume it here.

Finally, the function monty stats(prime) was iterated over for the first 50 primes using

the following code:

n=50

A=[0,0,0,0,0,0,0]

d=0

for j in [1..n]:

prime = nth_prime(j)

stats=monty_stats(prime)

for i in range(7):

A[i]=A[i]+stats[i]

d=d+prime^2-prime

B=[x/d for x in A]

print B

Which gave the final vector

B = [0, 125097/379084, 253563/758168, 108401/758168, 0, 0, 73005/379084]

as cited in the main body of the report.
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