Counting prime numbers: the Riemann hypothesis LMS Summer School 2023

Lewis Combes

University of Sheffield

.∋...>

The zeta function $\zeta(s)$ is defined as

$$\sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \text{ for } \operatorname{Re}(s) > 1.$$

It was studied by Euler, who evaluated it for all even integers. The most famous of these is the solution to **the Basel problem**:

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Euler gave his first proof in 1734.

Euler's solution to the Basel problem

The goal is to evaluate

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Euler started with the formula

$$\frac{\sin(x)}{x} = \prod_{n \in \mathbb{Z} \setminus \{0\}} \left(1 - \frac{x}{n\pi}\right).$$

In analogy with writing a polynomial

$$P(x) = x^{n} + a_{n-1}x^{n-1} + \ldots + a_{1}x + a_{0}$$

as the product

$$(x-r_1)(x-r_2)\ldots(x-r_n).$$

∃ ► < ∃ ►

Euler did more work on the zeta function. In 1737 he proved the **Euler product formula**:

$$\zeta(s) = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}$$

•

イロト イヨト イヨト イヨト

æ

Euler did more work on the zeta function. In 1737 he proved the **Euler product formula**:

$$\zeta(s) = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}$$

This was the first time a connection had been found between the zeta function and the primes. The formula follows from the fundamental theorem of arithmetic.

It would take another 100 years before this connection was explored further and used to begin the study of *the distribution of the primes*.

∃ ► < ∃ ►

It would take another 100 years before this connection was explored further and used to begin the study of *the distribution of the primes*.

This is the problem of the behaviour of the prime numbers *on average*. Central to the study of the distribution of the primes is the question: It would take another 100 years before this connection was explored further and used to begin the study of *the distribution of the primes*.

This is the problem of the behaviour of the prime numbers *on average*. Central to the study of the distribution of the primes is the question:

Given a number X, how many primes p are there such that $p \le X$?

Log tables

x	0	1	3	3	-4	5 6	:	8 9	1 +	123		5 6 ADD	7 8 9		*	0	x	3 3	4	ś	6	7	8 9	4	123	4 5
	-0000	0041	2036	0128	0170	212	-	1- 2120 -	42	4 8 13	-	21 25	29 34 38		50	-6990	6003	7007 7016	7024	7033	2041	7050	7059 706	-	123	
	-0414	0451				212 025	3 02	4 0334 0374			: 16	20 24	28 32 36		51	.7076	7084	7093 7101	7110	7118	7126	7135	7143 715	2 8	1 2 2	3.
						607 064	5 06	82 0719 0755	37	4711	15	19 23	26 30 33	100	53	-7160		7177 7185 7259 7267	7193	7203		7218	7326 733	5 8	1 2 2	
	-0792	0828				969 100	4 10	8 1072 1105		4711	14	18 21	24 27 31	100 E 100	54	.7324	7332	7340 7348	7356	7364	7372	7380	7388 735	6 8	1 2 2	1.3.
3	-1139	1173	1206	1239	1271	303 303 133	5 13	57 1399 1430	33	3710		16 20	23 26 30 21 26 25		55	·7404 ·7482		7419 7427 7497 7595		7443			7466 741 7543 755		122	
4	-1461	1492	523	1553	1584	614 164	4 16	73 1703 1732 99 1987 2014		26 8		15 18			57	·7559 ·7634	7566	7574 7582 7649 7657	7589	7597 7672	7604	7612	7619 763	7 8	1 2 2	. 3.
6	-2041	2068	2095	2122	2148 :	175 220	22	17 2253 2279				13 16			59	.7709	7716	7723 7731	7738	7745	7752	7760	7767 773	4 7	112	
78	-2304	2330	2355.	2180	2405 :	430 245		0 2504 2529 18 2742 2765		25 1	10	12 15	17 20 23		60	.7782		7796 7803		7818			7839 78		111	
9	-2788	2810				900 292	3 29	15 2967 2989	22	24 7	9	11 13	15 18 20		61	·7853 ·7924	7931	7868 7875 7938 7945	7952	7889 7959	7966	2973	7910 791	7 7	III	: 3 :
0	-3010	3032 :				118 313 324 334		50 3181 3201 55 3385 3404		24 0		11 13			63	-7993 -8062		8007 8014		8028 8096			8048 805		111	
2	3424	3444 :	3464	3483	3502	522 354	1 35	0 3579 3598	19	24 0	8	10 11	13 15 13		65	-8129	\$116	8142 8149	8156	8162	8169	8175	8182 818	9 7	111	3 3
3	-3617	3636				711 372 892 390		17 <u>3766</u> 3784 17 3945 3962	18	24 5	1	9 11	13 14 16	1.11	66	-8195		8209 8215 8274 8280		8228 8293			8248 82		113	
15	-3979	3997	1014	4031	4048 .	065 408	2 40	9 4116 4133	17	23 5	7	9 10	12 14 15	100	68	-8325 -8388	8331	\$338 \$344 \$401 \$407	8351	8357 8420	8363	\$370	8376 831 8439 84	12 6	111	2 2
7	-4314	4130				191 440		15 4440 4456		1.0					79	-8451		8463 8470		8482			8400 84		111	
8	4672	4487 .				548 456		19 4594 4609			6	8 9	11 12 14		71	-8513		\$525 \$531	8537	8543	8549		8561 85		111	1 2 ;
0	4771	4785				843 485		1 4886 4900		13 4		7 8	10 11 13		73	-8573	8579 8639	8385 8591 8645 8651	8597	8603 8663	8669 8669		8621 86 8681 86		III	
1	4914	4928				983 499		11 5024 5038		13 4	6		9 10 13		74	-8691		8704 8710 8762 8768		8722			8739 87. 8797 88		112	
3	-5185	5198	5211	5224		250 526	3 52	6 5289 5302	13	13 4		6 8	9 10 13	100	75	-8751		8810 8825	8531	8837	8842		8354 88		111	
14	-5315	5328 4	5340	5353 5478		378 539 502 551.		03 5416 5428 7 5539 5551		13 4		6 8	9 10,13		77	-8865		8876 8882 8932 8938	8887	8893 8949	\$899 \$054		8910 89 8965 89		III	
16	5563	5575 :	5587	5599	5611 ;	623 563	5 56	17 5658 5670	12	12 0	1 5	6 7	8 10 11	10 12	79	-8976	8982	8987 8993	8998	9004	9009	9015	9020 90.	15 6	11:	2 2
8	·5682 ·5798	5694 :	5821	5832	5843 :	740 575	6 58	53 5775 5786 77 5888 5899	10	12 4	4	6 7	8 10 11	R.A	80 81	-9031		9042 9047		9058			9074 90		111	
19	-5911	5922				966 597		58 5999 6010 96 6107 6117		12 3		67	8 9 10		83	-9138	9143	9095 9101 9149 9154	9159	9165	9170	9175	9128 91 9180 91	6 5	111	1 1
IO I	-6128	6031				180 619		01 6212 6222	11	12 3	4	5 7	2 8 9 10		83	-9191		9201 9205	1	9217	-		9232 92		TIS	
12	-6232	6243 6345	6253	6263	6274	284 629	4 63	4 6314 6325 5 6415 6425	10	12 1	4	5 6	7 8 5		35	-9294	9299	9304 9309	9315	9320 9370	9325	9330	9335 93	10 5	111	2 1
4	-6435	6444	6454	6464	6474	484 649	3 65	3 6513 6522	10	1 2	4	5 6	789		87	-9345		9355 9300		9370			9305 93		01	1 2
15	-6532 -6628	6542				580 659 675 668		99 6609 6618 93 6703 6713				5 6			83 89	-9445	9450	9455 9460	9465	9469	9474	9479	9484 94 9533 95	9 5	01	1 1
17	-6721	6730	6739	6749	6758	767 677	6 67	85 6794 6803		12					90	-9542		9552 9557		9566			9581 95		01	
18	-6812 -6902	6821 6911				857 686		75 6884 6893 64 6972 6981		13	3-4	4 5			91	-9590	9595	9600 9605	9509	9614	9619	9624	9628 96	13 5	01	1 2
-				-	24		-		-	-	-		1		93 93	-9638 -9685	9043 9689	9647 5652 9694 9699	9057 9703	9661 9708	9000 9713	9071	9675 96 9722 97	50 5 57 5	0 I 0 I	
		No.		log 49715	10	r == loe	× -	(1/M) logan	(U/MO =	No 2/102		log 36223		94	-9731	9736	9741 9745 9786 9791	9750	9754	9759	9763	9768 97 9814 98	13 5	01	1 2
		2-7182		43429				M loge x		<i>M</i> =			63778		95	-9823		9832 9836		9845			9859 98		01	1 2
	P	X		3	3	4.	5	6 15 2.6058	7	8		9	10		97	-9868		9877 9961		9890 9934		9899	9903 99	4 30	01	1 2
	loge	* 1.565	7 1	1314	2-6971	1-2628	3.83	85 3.3942	4959	9 4.52	56 4	0913	5 6571		99	9956		9965 9969	9974	9978	9983		9991 99		0 1	
															-	-	-		-		-			-	-	-

æ

◆□ > ◆圖 > ◆臣 > ◆臣 >

"Even before I had begun my more detailed investigations into higher arithmetic, one of my first projects was to turn my attention to the decreasing frequency of primes, to which end I counted the primes in several chiliads and recorded the results on the attached white pages. I soon recognized that behind all of its fluctuations, this frequency is on the average inversely proportional to the logarithm, so that the number of primes below a given bound n is approximately equal to

$$\int \frac{dn}{\log(n)},$$

where the logarithm is understood to be hyperbolic."

Y. Tschinkel. About the cover: on the distribution of primes—Gauss' tables. Bull. Amer. Math. Soc. 43 (1) (2005), pp.89-91.

イロト イヨト イヨト ・

In modern language, Gauss' observation is written in the following way. Write

$$\pi(X) = \sum_{n \leq X} \mathbb{1}(n \text{ is prime}).$$

Then

$$\pi(X) \approx \frac{X}{\log(X)}.$$

4 3 4 3 4 3 4

In modern language, Gauss' observation is written in the following way. Write

$$\pi(X) = \sum_{n \leq X} \mathbb{1}(n \text{ is prime}).$$

Then

$$\pi(X) \approx \frac{X}{\log(X)}.$$

The statement of the **prime number theorem** is more precise than this. It says that

$$rac{\pi(X)}{X/\log(X)} o 1$$
 as $X o \infty$.

• • = • • = •

The prime number theorem

Dcoetzee, CC0, via Wikimedia Commons

-∢ ∃ ▶

$$\pi(X) = \frac{X}{\log(X)} + E(X),$$

where $E(X) := \pi(X) - \frac{X}{\log(X)}$.

$$\pi(X) = \frac{X}{\log(X)} + E(X),$$

where $E(X) := \pi(X) - \frac{X}{\log(X)}$. So far this is nothing.

$$\pi(X) = \frac{X}{\log(X)} + E(X),$$

where $E(X) := \pi(X) - \frac{X}{\log(X)}$. So far this is nothing.

The difficult part is bounding the error term E(X).

イロト イヨト イヨト ・

$$\pi(X) = \frac{X}{\log(X)} + E(X),$$

where $E(X) := \pi(X) - \frac{X}{\log(X)}$. So far this is nothing.

The difficult part is bounding the error term E(X).

Showing $E(X)/(X/\log(X)) \to 0$ and $x \to \infty$ proves PNT.

イロト イポト イヨト イヨト 二日

	X	$\pi(X)$	$\frac{X}{\log(X)}$	$E(X) = \pi(X) - \frac{X}{\log(X)}$
-	10	4	4.3429	-0.3429
	100	25	21.714	3.285
	1000	168	144.764	23.235
	104	1229	1085.74	143.26
	10 ⁵	9592	8685.89	906.11
	10 ⁶	78498	72382.41	6115.59
	10 ⁷	664579	620420.69	44158.31
	10 ⁸	5761455	542681.02	332773.98
	10 ⁹	50847534	48254942.43	2592591.57

3

イロト イヨト イヨト イヨト

We want a nicer way to write error terms.

We say f(X) = O(g(X)) if $|f(X)| < C \cdot g(X)$ eventually.

э

イロト 不得 トイヨト イヨト

We want a nicer way to write error terms.

We say f(X) = O(g(X)) if $|f(X)| < C \cdot g(X)$ eventually.

$$X = O(X)$$
$$X^{2} + X + 1 = O(X^{2})$$
$$\sin(X) = O(1)$$
$$10 \sin(X) = O(1)$$

э

イロト 不得 トイヨト イヨト

The prime number theorem has error term

$$\pi(X) = rac{X}{\log(X)} + O\left(rac{X}{\log(X)^2}
ight)$$

æ

メロト メポト メヨト メヨト

The prime number theorem has error term

$$\pi(X) = \frac{X}{\log(X)} + O\left(\frac{X}{\log(X)^2}\right)$$

In particular,

$$\lim_{X\to\infty}\frac{\pi(X)}{X/\log(X)}\to 1.$$

æ

(日) (四) (日) (日) (日)

Bernhard Riemann (1826-1886) worked mostly in analysis and geometry.

His only contribution to number theory was the paper *"Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse"* (in English: *"On the Number of Primes Less Than a Given Magnitude"*).

Bernhard Riemann (1826-1886) worked mostly in analysis and geometry.

His only contribution to number theory was the paper *"Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse"* (in English: *"On the Number of Primes Less Than a Given Magnitude"*).

In this paper, he extended the domain of convergence of zeta to $\mathbb{C}\setminus\{1\}$ using a technique called **analytic continuation**. He also proved the **functional equation** of the zeta function.

$$\zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s).$$

Here $\Gamma(s)$ the is Gamma function, defined by

$$\Gamma(s)=\int_0^\infty t^{s-1}e^{-t}dt.$$

く 何 ト く ヨ ト く ヨ ト

Technically, Riemann computed an exact formula for a related function

$$\pi^*(X) = \sum_{p^k \leq X} rac{1}{k}.$$

イロト イポト イヨト イヨト

Technically, Riemann computed an exact formula for a related function

$$\pi^*(X) = \sum_{p^k \leq X} \frac{1}{k}.$$

This counts primes and their powers, assigning lower weight to higher powers. A few simple manipulations can be used to count just the primes using this function.

Technically, Riemann computed an exact formula for a related function

$$\pi^*(X) = \sum_{p^k \leq X} \frac{1}{k}.$$

This counts primes and their powers, assigning lower weight to higher powers. A few simple manipulations can be used to count just the primes using this function.

The formula is

$$\pi^*(X) = \operatorname{li}(X) - \sum_{\zeta(\rho)=0} \operatorname{li}(X^{\rho}),$$

where

$$\operatorname{li}(X) = \int_2^X \frac{1}{\log(t)} dt.$$

Finally we come back around to the zeta function. The second term in the explicit expression is

 $\sum_{\zeta(\rho)=0} \operatorname{li}(X^{\rho}).$

This sum is taken over all zeros $\rho \in \mathbb{C}$ of zeta.

This was the first indication that the zeros of the zeta function are related to the distribution of the primes.

The zeta function (revisited)

Lewis Combes (University of Sheffield)

æ

Zero-free regions

To prove PNT, it is enough to show that

 $\zeta(1+it) \neq 0$ for all $t \in \mathbb{R}$.

(日) (四) (日) (日) (日)

To prove PNT, it is enough to show that

 $\zeta(1+it) \neq 0$ for all $t \in \mathbb{R}$.

Using the explicit formula for $\pi(X)$, one proves that

$$\pi(X) = rac{X}{\log(X)} + O(X^ heta\log(X)),$$

where $\boldsymbol{\theta}$ is the largest value such that

$$\zeta(\sigma + it) \neq 0$$
 for $\sigma > \theta$.

To prove PNT, it is enough to show that

 $\zeta(1+it) \neq 0$ for all $t \in \mathbb{R}$.

Using the explicit formula for $\pi(X)$, one proves that

$$\pi(X) = \frac{X}{\log(X)} + O(X^{\theta}\log(X)),$$

where $\boldsymbol{\theta}$ is the largest value such that

$$\zeta(\sigma + it) \neq 0$$
 for $\sigma > \theta$.

The Riemann hypothesis implies the best possible bound

$$\pi(X) = \frac{X}{\log(X)} + O(x^{1/2}\log(X)).$$

- 4 四 ト - 4 回 ト

$$\pi^*(X) = \mathrm{li}(X) - \sum_{\substack{\zeta(
ho) = 0 \\ 0 < \mathrm{Re}(
ho) < 1}} \mathrm{li}(X^{
ho}) - \log(2) - \int_X^\infty \frac{1}{t(t^2 - 1)\log(t)} dt.$$

æ

イロト イヨト イヨト イヨト

$$\pi^*(X) = \mathrm{li}(X) - \sum_{\substack{\zeta(\rho) = 0 \\ 0 < \mathrm{Re}(\rho) < 1}} \mathrm{li}(X^{\rho}) - \log(2) - \int_X^{\infty} \frac{1}{t(t^2 - 1)\log(t)} dt.$$

The Möbius inversion formula gives

$$\pi(X) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \pi^*(X^{\frac{1}{n}}).$$

æ

イロト イヨト イヨト イヨト

$$\pi^*(X) = \mathrm{li}(X) - \sum_{\substack{\zeta(\rho) = 0 \\ 0 < \mathrm{Re}(\rho) < 1}} \mathrm{li}(X^{\rho}) - \log(2) - \int_X^{\infty} \frac{1}{t(t^2 - 1)\log(t)} dt.$$

The Möbius inversion formula gives

$$\pi(X)=\sum_{n=1}^{\infty}\frac{\mu(n)}{n}\pi^*(X^{\frac{1}{n}}).$$

So finally we get

$$\pi(X) = R(X) - \sum_{\zeta(\rho)=0} R(X^{\rho}), \text{ where } R(X) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \operatorname{li}(X^{\frac{1}{n}}).$$

э

• • = • • = •

Image: Image:

The explicit formula in action

The explicit formula in action

The state-of-the-art is the Vinogradov-Korobov bound:

$$\zeta(\sigma + it) \neq 0$$

for

$$\sigma \geq 1 - rac{c}{(\log|t|+1)^{2/3}(\log\log(3+|t|))^{1/3}}.$$

This bound doesn't even give a constant width.

∃ ► < ∃ ►