Counting prime numbers: the Riemann hypothesis LMS Summer School 2023

Lewis Combes

University of Sheffield

The zeta function

The zeta function $\zeta(s)$ is defined as

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \text { for } \operatorname{Re}(s)>1
$$

It was studied by Euler, who evaluated it for all even integers. The most famous of these is the solution to the Basel problem:

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} .
$$

Euler gave his first proof in 1734.

Euler's solution to the Basel problem

The goal is to evaluate

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Euler started with the formula

$$
\frac{\sin (x)}{x}=\prod_{n \in \mathbb{Z} \backslash\{0\}}\left(1-\frac{x}{n \pi}\right)
$$

In analogy with writing a polynomial

$$
P(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

as the product

$$
\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right) .
$$

The Euler product

Euler did more work on the zeta function. In 1737 he proved the Euler product formula:

$$
\zeta(s)=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

The Euler product

Euler did more work on the zeta function. In 1737 he proved the Euler product formula:

$$
\zeta(s)=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

This was the first time a connection had been found between the zeta function and the primes. The formula follows from the fundamental theorem of arithmetic.

Prime numbers

It would take another 100 years before this connection was explored further and used to begin the study of the distribution of the primes.

Prime numbers

It would take another 100 years before this connection was explored further and used to begin the study of the distribution of the primes.

This is the problem of the behaviour of the prime numbers on average. Central to the study of the distribution of the primes is the question:

Prime numbers

It would take another 100 years before this connection was explored further and used to begin the study of the distribution of the primes.

This is the problem of the behaviour of the prime numbers on average. Central to the study of the distribution of the primes is the question:

Given a number X, how many primes p are there such that $p \leq X$?

Log tables

COMMON LOGARITHMS $\log _{10} x$

COMMON LOGARITHMS $\log _{10} x$

*	0						6				$\Delta_{\text {m }}$	12	456	789
											+	ADD		
50	. 6990	6993	70077	7016	7024	7033	942	7050	7059	7067	9	123	443	678
5 sr	-707	708	093			128	712	713	7143	7152	8	12	345	667
${ }_{53}^{53}$	7760	7168	7177	7185	7193	7202	7210	718	7236	7235	${ }_{8}^{8}$	$1{ }_{1}^{1} 22$	345	667
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	8	122	345	667
54	7324	73	734	7348	7356	7364	737	7380	7388	7396	8	122	345	667
35	. 7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	8	122	345	
56	748	7490		7505	7513	7520	7528	7536	7543	7551	8		345	667
57	. 75	7566	7574.7	$\frac{7582}{7587}$	7589	75977	7604	${ }_{7612}^{7686}$	7694	7627	8	$\begin{array}{ll}1 \\ \text { t } & 2\end{array} 2$	$34 \frac{5}{5}$	667 667
58 58 50	7734	7642		$\frac{7657}{7731}$	7664	76727	7679	7686	7694	7771	8	$\begin{array}{lllll}1 & 2 & 2 \\ 1 & 1 & 2\end{array}$		667 566
59	-7709	7716	7723	7731	7738	7745	7752	760	7767	777	7	112	344	566
60	-7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	7	112	344	566
${ }_{68}^{68}$	${ }^{-7853}$	7860	7868	7875	${ }_{7882}^{7882}$	78897	7896	7903	7910	7917	7	± 1		
638	-7924	7931 8000	7938 8007	7945	${ }_{8021}^{7952}$	${ }_{8998}^{79}$	7966 8035	7973 8041	7980 8048		7	1 1 1 1 1 1	$\begin{array}{llll}3 & 3 & 4 \\ 3 & 3 & 4 \\ \\ & 3 & \end{array}$	566
64		8069	8075	8082	So89	8096	8102				7	11	334	
65	812	8136	8142	8149	8156	8162	8169	${ }_{8176}$	8182	Bi89	7	1	33	
66	- 8195	8202	8209	8215	8222	8228	8235	8241	8248	3254	7	1 I	33	566
67	8261	8267	82748	8280	8287	8293	8299	8306	8312	8319	6	112	234	455
68	. 3325	8331	83388	8354	${ }^{8351}$	8357	${ }^{8363}$	8370	${ }^{8376}$	8382	6	11	234	455
69	. 8388	8395	8401	8407	8414	${ }_{84208}$	8426	8.432	8439	8445	6	1	234	455
70	. 8451	8457	63	3470	8476	84828	8488	$\$_{494}$	8500	8506	6	11	234	455
7	. 8513	8519	8525	8531	8537	8543	${ }_{8549}$	8555	${ }^{856 t}$	8567	6	t:12		
72	-3573	8579	8385	8591	8597	${ }_{8603}^{863}$	8609	${ }_{8}^{8675}$	8628	8627	6	\%	234	455
73	-8633	8539	86.45	8651	8657	8663	8669	8675	8681	8686	6	11	23	455
74	-8692	${ }^{8698}$	8704	${ }_{8710}^{87}$	8716	${ }^{8722}$	${ }_{8727}$	8733	8739	8745	6	${ }_{11}^{11}$	234	455
75	-8751	8756	8762 8830	8768		${ }_{83779}$	${ }^{8785}$	8791	${ }^{8797}$	8885	6	$\begin{array}{llll}1 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}$	234	453
76	-8808	88		8825	88	37	8842	8848	8854	8859	6	1	234	453
	-8865	${ }^{8871}$	8876	88	8887	8893	8899	8904	8910	8915	6	1	23	
78	-8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	6	$1 \begin{array}{llll}1 & 1 & 2\end{array}$	234	455
79	-8976	${ }^{8982}$		93	8998	9004	9009	9015	920	9025	6	11	23	455
So	-9031	903	9042	47	9053	9058	9063	9069	9074	9079	5	112	23	445
$8 \mathrm{8x}$	-9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	5	11	233	445
82	-9138	9143	9149		9159	916	9170	9175			5	$1{ }_{1}^{1} 122$	233	445
83	-9191	9196	92019	06	9212	9217	223	922	9232	9238	5	1	233	445
${ }^{84} 8$	-9243	9248	9304	925 B	9263	269	9274		9284	9289	5	11 1 2 1 1 1 1	2	4.45
85 86	-9294	9299	9394	9309	9315	${ }^{9320}$	9323	$933{ }^{\circ}$	9335	9340	5	$\begin{array}{lllll}1 & 1 & 2 \\ 1 & 1 \\ 1\end{array}$	$2{ }^{2} 33$	4 4 4 45
86	9344	93	9355	9360	9365	9370	2375	93	9385	-	5	1	13	445
$\begin{array}{\|l\|l} 87 \\ 88 \end{array}$	-9395	9400	9405	9410 9460	9415	20	9425	9430	9435 9484	9440	5		$\begin{array}{lllll}2 & 2 & 3 \\ 2 & 2 & 3 \\ 2\end{array}$	
88 89	9445	9450	9455 9		9465 9513		9474	${ }_{9}^{9479}$	9484	9489 9538	5	O-1.	$\begin{array}{lllll}2 & 2 & 3 \\ 2 & 2 & 3 \\ & 2 & 3\end{array}$	
90	9542	9547	9552	9557	9561	9565	9571	9576	81	9586	5	01	223	344
$9{ }_{9}^{91}$.9590	9595	9600	9605		9614	9619		${ }^{9628}$	9633	5	${ }_{0}^{0} 111$	223	
92	-9638	${ }^{9643}$	9647	${ }^{9652}$	9657	965 97	9666	9671	9675	9687	5	$0 \cdot 1$	2.21	344
93	${ }^{-9685}$	96			9703		9713	9717	722	9727	5	011	$22 \cdot \frac{1}{3}$	344
94	-9731	9736		9745 9791				$\begin{aligned} & 9763 \\ & 9500 \end{aligned}$		$\begin{aligned} & 9773 \\ & 9818 \end{aligned}$	5	\bigcirc	$\begin{array}{llll}2 & 2 & 3 \\ 2 & 2 & 3\end{array}$	$\begin{array}{llll}3 & 4 & 4 \\ 3 & 4 \\ \\ & & 4\end{array}$
96	${ }_{-9823}$						9850	9354			4	O1		$\begin{array}{llll}3 & 4 & 4 \\ 3 & 3 & 4 \\ & \\ 3 & 4\end{array}$
97	-9868			${ }^{9861}$	9886	9890	9894	9899	9003	9508	4		$\begin{array}{llll}2 & 2 & 2 \\ 1 & 2 \\ 1\end{array}$	
99	.9913	9961		9926	9930	9934	$\frac{.9939}{9983}$		9948	$995 x$	4	$\begin{array}{lllll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$	2 2 2	$\begin{array}{llll}3 & 3 & 4 \\ 3 & 3 & 4\end{array}$
99	-9936	9961		9969	9974	9978	9983	9987	9991	9996	4	011	2	334

Gauss (1777-1885) and the prime number theorem

"Even before I had begun my more detailed investigations into higher arithmetic, one of my first projects was to turn my attention to the decreasing frequency of primes, to which end I counted the primes in several chiliads and recorded the results on the attached white pages. I soon recognized that behind all of its fluctuations, this frequency is on the average inversely proportional to the logarithm, so that the number of primes below a given bound n is approximately equal to

$$
\int \frac{d n}{\log (n)}
$$

where the logarithm is understood to be hyperbolic."
Y. Tschinkel. About the cover: on the distribution of primes-Gauss' tables. Bull. Amer. Math. Soc. 43 (1) (2005), pp.89-91.

Gauss and the prime numer theorem (cont.)

In modern language, Gauss' observation is written in the following way. Write

$$
\pi(X)=\sum_{n \leq X} \mathbb{1}(n \text { is prime }) .
$$

Then

$$
\pi(X) \approx \frac{X}{\log (X)}
$$

Gauss and the prime numer theorem (cont.)

In modern language, Gauss' observation is written in the following way. Write

$$
\pi(X)=\sum_{n \leq X} \mathbb{1}(n \text { is prime }) .
$$

Then

$$
\pi(X) \approx \frac{X}{\log (X)}
$$

The statement of the prime number theorem is more precise than this. It says that

$$
\frac{\pi(X)}{X / \log (X)} \rightarrow 1 \quad \text { as } X \rightarrow \infty
$$

The prime number theorem

How to prove the prime number theorem

Attempts to prove PNT led to the creation of modern analytic number theory. The central method of analytic number theory is to estimate error terms. Write

$$
\pi(X)=\frac{X}{\log (X)}+E(X)
$$

where $E(X):=\pi(X)-\frac{X}{\log (X)}$.

How to prove the prime number theorem

Attempts to prove PNT led to the creation of modern analytic number theory. The central method of analytic number theory is to estimate error terms. Write

$$
\pi(X)=\frac{X}{\log (X)}+E(X)
$$

where $E(X):=\pi(X)-\frac{X}{\log (X)}$. So far this is nothing.

How to prove the prime number theorem

Attempts to prove PNT led to the creation of modern analytic number theory. The central method of analytic number theory is to estimate error terms. Write

$$
\pi(X)=\frac{X}{\log (X)}+E(X)
$$

where $E(X):=\pi(X)-\frac{X}{\log (X)}$. So far this is nothing.
The difficult part is bounding the error term $E(X)$.

How to prove the prime number theorem

Attempts to prove PNT led to the creation of modern analytic number theory. The central method of analytic number theory is to estimate error terms. Write

$$
\pi(X)=\frac{X}{\log (X)}+E(X)
$$

where $E(X):=\pi(X)-\frac{X}{\log (X)}$. So far this is nothing.
The difficult part is bounding the error term $E(X)$.
Showing $E(X) /(X / \log (X)) \rightarrow 0$ and $x \rightarrow \infty$ proves PNT.

Prime number theorem stats

X	$\pi(X)$	$\frac{X}{\log (X)}$	$E(X)=\pi(X)-\frac{X}{\log (X)}$
10	4	4.3429	-0.3429
100	25	21.714	3.285
1000	168	144.764	23.235
10^{4}	1229	1085.74	143.26
10^{5}	9592	8685.89	906.11
10^{6}	78498	72382.41	6115.59
10^{7}	664579	620420.69	44158.31
10^{8}	5761455	542681.02	332773.98
10^{9}	50847534	48254942.43	2592591.57

Big O notation

We want a nicer way to write error terms.
We say $f(X)=O(g(X))$ if $|f(X)|<C \cdot g(X)$ eventually.

Big O notation

We want a nicer way to write error terms.
We say $f(X)=O(g(X))$ if $|f(X)|<C \cdot g(X)$ eventually.

$$
\begin{aligned}
X & =O(X) \\
X^{2}+X+1 & =O\left(X^{2}\right) \\
\sin (X) & =O(1) \\
10 \sin (X) & =O(1)
\end{aligned}
$$

PNT with Big 0

The prime number theorem has error term

$$
\pi(X)=\frac{X}{\log (X)}+O\left(\frac{X}{\log (X)^{2}}\right)
$$

PNT with Big 0

The prime number theorem has error term

$$
\pi(X)=\frac{X}{\log (X)}+O\left(\frac{X}{\log (X)^{2}}\right)
$$

In particular,

$$
\lim _{X \rightarrow \infty} \frac{\pi(X)}{X / \log (X)} \rightarrow 1
$$

Riemann's work

Bernhard Riemann (1826-1886) worked mostly in analysis and geometry.
His only contribution to number theory was the paper "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse" (in English: "On the Number of Primes Less Than a Given Magnitude").

Riemann's work

Bernhard Riemann (1826-1886) worked mostly in analysis and geometry.

His only contribution to number theory was the paper "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse" (in English: "On the Number of Primes Less Than a Given Magnitude").

In this paper, he extended the domain of convergence of zeta to $\mathbb{C} \backslash\{1\}$ using a technique called analytic continuation. He also proved the functional equation of the zeta function.

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

Here $\Gamma(s)$ the is Gamma function, defined by

$$
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t
$$

Riemann's work (cont.)

Technically, Riemann computed an exact formula for a related function

$$
\pi^{*}(X)=\sum_{p^{k} \leq X} \frac{1}{k}
$$

Riemann's work (cont.)

Technically, Riemann computed an exact formula for a related function

$$
\pi^{*}(X)=\sum_{p^{k} \leq X} \frac{1}{k}
$$

This counts primes and their powers, assigning lower weight to higher powers. A few simple manipulations can be used to count just the primes using this function.

Riemann's work (cont.)

Technically, Riemann computed an exact formula for a related function

$$
\pi^{*}(X)=\sum_{p^{k} \leq X} \frac{1}{k}
$$

This counts primes and their powers, assigning lower weight to higher powers. A few simple manipulations can be used to count just the primes using this function.

The formula is

$$
\pi^{*}(X)=\operatorname{li}(X)-\sum_{\zeta(\rho)=0} \operatorname{li}\left(X^{\rho}\right)
$$

where

$$
\operatorname{li}(X)=\int_{2}^{X} \frac{1}{\log (t)} d t
$$

Zeta reappears

Finally we come back around to the zeta function. The second term in the explicit expression is

$$
\sum_{\zeta(\rho)=0} \operatorname{li}\left(X^{\rho}\right)
$$

This sum is taken over all zeros $\rho \in \mathbb{C}$ of zeta.
This was the first indication that the zeros of the zeta function are related to the distribution of the primes.

The zeta function (revisited)

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=939039

Zero-free regions

To prove PNT, it is enough to show that

$$
\zeta(1+i t) \neq 0 \text { for all } t \in \mathbb{R} .
$$

Zero-free regions

To prove PNT, it is enough to show that

$$
\zeta(1+i t) \neq 0 \text { for all } t \in \mathbb{R} .
$$

Using the explicit formula for $\pi(X)$, one proves that

$$
\pi(X)=\frac{X}{\log (X)}+O\left(X^{\theta} \log (X)\right)
$$

where θ is the largest value such that

$$
\zeta(\sigma+i t) \neq 0 \text { for } \sigma>\theta
$$

Zero-free regions

To prove PNT, it is enough to show that

$$
\zeta(1+i t) \neq 0 \text { for all } t \in \mathbb{R} .
$$

Using the explicit formula for $\pi(X)$, one proves that

$$
\pi(X)=\frac{X}{\log (X)}+O\left(X^{\theta} \log (X)\right)
$$

where θ is the largest value such that

$$
\zeta(\sigma+i t) \neq 0 \text { for } \sigma>\theta
$$

The Riemann hypothesis implies the best possible bound

$$
\pi(X)=\frac{X}{\log (X)}+O\left(x^{1 / 2} \log (X)\right)
$$

Riemann's work (cont.)

$$
\pi^{*}(X)=\operatorname{li}(X)-\sum_{\substack{\zeta(\rho)=0 \\ 0<\operatorname{Re}(\rho)<1}} \operatorname{li}\left(X^{\rho}\right)-\log (2)-\int_{X}^{\infty} \frac{1}{t\left(t^{2}-1\right) \log (t)} d t
$$

Riemann's work (cont.)

$$
\pi^{*}(X)=\operatorname{li}(X)-\sum_{\substack{\zeta(\rho)=0 \\ 0<\operatorname{Re}(\rho)<1}} \operatorname{li}\left(X^{\rho}\right)-\log (2)-\int_{X}^{\infty} \frac{1}{t\left(t^{2}-1\right) \log (t)} d t
$$

The Möbius inversion formula gives

$$
\pi(X)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \pi^{*}\left(X^{\frac{1}{n}}\right)
$$

Riemann's work (cont.)

$$
\pi^{*}(X)=\operatorname{li}(X)-\sum_{\substack{\zeta(\rho)=0 \\ 0<\operatorname{Re}(\rho)<1}} \operatorname{li}\left(X^{\rho}\right)-\log (2)-\int_{X}^{\infty} \frac{1}{t\left(t^{2}-1\right) \log (t)} d t
$$

The Möbius inversion formula gives

$$
\pi(X)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \pi^{*}\left(X^{\frac{1}{n}}\right)
$$

So finally we get

$$
\pi(X)=R(X)-\sum_{\zeta(\rho)=0} R\left(X^{\rho}\right), \text { where } R(X)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \operatorname{li}\left(X^{\frac{1}{n}}\right)
$$

The explicit formula in action

The explicit formula in action

Zero-free regions (cont.)

The state-of-the-art is the Vinogradov-Korobov bound:

$$
\zeta(\sigma+i t) \neq 0
$$

for

$$
\sigma \geq 1-\frac{c}{(\log |t|+1)^{2 / 3}(\log \log (3+|t|))^{1 / 3}}
$$

This bound doesn't even give a constant width.

