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The zeta function

The zeta function ζ(s) is defined as

∞∑
n=1

1

ns
, for Re(s) > 1.

It was studied by Euler, who evaluated it for all even integers. The most
famous of these is the solution to the Basel problem:

ζ(2) =
∞∑
n=1

1

n2
=

π2

6
.

Euler gave his first proof in 1734.
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Euler’s solution to the Basel problem

The goal is to evaluate
∞∑
n=1

1

n2
.

Euler started with the formula

sin(x)

x
=

∏
n∈Z\{0}

(
1− x

nπ

)
.

In analogy with writing a polynomial

P(x) = xn + an−1x
n−1 + . . .+ a1x + a0

as the product
(x − r1)(x − r2) . . . (x − rn).
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The Euler product

Euler did more work on the zeta function. In 1737 he proved the Euler
product formula:

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.

This was the first time a connection had been found between the zeta
function and the primes. The formula follows from the fundamental
theorem of arithmetic.
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Prime numbers

It would take another 100 years before this connection was explored
further and used to begin the study of the distribution of the primes.

This is the problem of the behaviour of the prime numbers on average.
Central to the study of the distribution of the primes is the question:

Given a number X , how many primes p are there such that p ≤ X?
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Log tables
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Gauss (1777-1885) and the prime number theorem

“Even before I had begun my more detailed investigations into higher
arithmetic, one of my first projects was to turn my attention to the
decreasing frequency of primes, to which end I counted the primes in
several chiliads and recorded the results on the attached white pages. I
soon recognized that behind all of its fluctuations, this frequency is
on the average inversely proportional to the logarithm, so that the
number of primes below a given bound n is approximately equal to∫

dn

log(n)
,

where the logarithm is understood to be hyperbolic.”

Y. Tschinkel. About the cover: on the distribution of primes—Gauss’
tables. Bull. Amer. Math. Soc. 43 (1) (2005), pp.89-91.
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Gauss and the prime numer theorem (cont.)

In modern language, Gauss’ observation is written in the following way.
Write

π(X ) =
∑
n≤X

1(n is prime).

Then

π(X ) ≈ X

log(X )
.

The statement of the prime number theorem is more precise than this.
It says that

π(X )

X/ log(X )
→ 1 as X → ∞.
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The prime number theorem

Dcoetzee, CC0, via Wikimedia Commons
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How to prove the prime number theorem

Attempts to prove PNT led to the creation of modern analytic number
theory. The central method of analytic number theory is to estimate error
terms. Write

π(X ) =
X

log(X )
+ E (X ),

where E (X ) := π(X )− X
log(X ) .

So far this is nothing.

The difficult part is bounding the error term E (X ).

Showing E (X )/(X/ log(X )) → 0 and x → ∞ proves PNT.
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Prime number theorem stats

X π(X ) X
log(X ) E (X ) = π(X )− X

log(X )

10 4 4.3429 -0.3429
100 25 21.714 3.285
1000 168 144.764 23.235
104 1229 1085.74 143.26
105 9592 8685.89 906.11
106 78498 72382.41 6115.59
107 664579 620420.69 44158.31
108 5761455 542681.02 332773.98
109 50847534 48254942.43 2592591.57
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Big O notation

We want a nicer way to write error terms.

We say f (X ) = O(g(X )) if |f (X )| < C · g(X ) eventually.

X = O(X )

X 2 + X + 1 = O(X 2)

sin(X ) = O(1)

10 sin(X ) = O(1)
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PNT with Big O

The prime number theorem has error term

π(X ) =
X

log(X )
+ O

(
X

log(X )2

)

In particular,

lim
X→∞

π(X )

X/ log(X )
→ 1.

Lewis Combes (University of Sheffield) Counting primes 13 / 22



PNT with Big O

The prime number theorem has error term

π(X ) =
X

log(X )
+ O

(
X

log(X )2

)
In particular,

lim
X→∞

π(X )

X/ log(X )
→ 1.

Lewis Combes (University of Sheffield) Counting primes 13 / 22



Riemann’s work

Bernhard Riemann (1826-1886) worked mostly in analysis and geometry.

His only contribution to number theory was the paper “Ueber die Anzahl
der Primzahlen unter einer gegebenen Grösse” (in English: “On the
Number of Primes Less Than a Given Magnitude”).

In this paper, he extended the domain of convergence of zeta to C\{1}
using a technique called analytic continuation. He also proved the
functional equation of the zeta function.

ζ(s) = 2sπs−1 sin(πs2 )Γ(1− s)ζ(1− s).

Here Γ(s) the is Gamma function, defined by

Γ(s) =

∫ ∞

0
ts−1e−tdt.
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Riemann’s work (cont.)

Technically, Riemann computed an exact formula for a related function

π∗(X ) =
∑
pk≤X

1

k
.

This counts primes and their powers, assigning lower weight to higher
powers. A few simple manipulations can be used to count just the primes
using this function.

The formula is
π∗(X ) = li(X )−

∑
ζ(ρ)=0

li(X ρ),

where

li(X ) =

∫ X

2

1

log(t)
dt.
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Zeta reappears

Finally we come back around to the zeta function. The second term in the
explicit expression is ∑

ζ(ρ)=0

li(X ρ).

This sum is taken over all zeros ρ ∈ C of zeta.

This was the first indication that the zeros of the zeta function are related
to the distribution of the primes.
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The zeta function (revisited)

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=939039
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Zero-free regions

To prove PNT, it is enough to show that

ζ(1 + it) ̸= 0 for all t ∈ R.

Using the explicit formula for π(X ), one proves that

π(X ) =
X

log(X )
+ O(X θ log(X )),

where θ is the largest value such that

ζ(σ + it) ̸= 0 for σ > θ.

The Riemann hypothesis implies the best possible bound

π(X ) =
X

log(X )
+ O(x1/2 log(X )).
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Riemann’s work (cont.)

π∗(X ) = li(X )−
∑

ζ(ρ)=0
0<Re(ρ)<1

li(X ρ)− log(2)−
∫ ∞

X

1

t(t2 − 1) log(t)
dt.

The Möbius inversion formula gives

π(X ) =
∞∑
n=1

µ(n)

n
π∗(X

1
n ).

So finally we get

π(X ) = R(X )−
∑

ζ(ρ)=0

R(X ρ), where R(X ) =
∞∑
n=1

µ(n)

n
li(X

1
n ).
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The explicit formula in action
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Zero-free regions (cont.)

The state-of-the-art is the Vinogradov-Korobov bound:

ζ(σ + it) ̸= 0

for
σ ≥ 1− c

(log |t|+ 1)2/3(log log(3 + |t|))1/3
.

This bound doesn’t even give a constant width.
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