LMS SUMMER SCHOOL 2023-SOME TOPICS IN COMPUTATIONAL NUMBER THEORY PROBLEMS

LEWIS COMBES

1. Lecture 1 - Irrational and transcendental numbers

Problem 1.1. Let $a, b \in \mathbb{Z}$. Write down quadratic integer polynomials $P_{1}(x), P_{2}(x)$ such that

$$
P_{1}(\sqrt{a})=0, \quad P_{2}(\sqrt{b})=0
$$

By squaring $\sqrt{a}+\sqrt{b}$ and rearranging, find a third integral polynomial $P_{3}(x)$ such that

$$
P_{3}(\sqrt{a}+\sqrt{b})=0 .
$$

What do you notice about the degrees of P_{1}, P_{2} and P_{3} ? If you repeated the process for the algebraic numbers $\sqrt{a}, \sqrt[3]{b}$, what would you expect the degree of P_{3} to be?

Problem 1.2. Recall the Lindemann-Weierstrass theorem: if θ is an algebraic number, then e^{θ} is transcendental. Use Lindemann-Weirstrass to prove the transcendence of
(i) e^{2}
(ii) $\log (2)$
(iii) $\cos (1)$ (hint: consider the polynomial $x^{2}-2 \cos (1) x+1$ evaluated at e^{i})

2. Lecture 2 - The Riemann Hypothesis

Problem 2.1. Using the product expansion

$$
\frac{\sin (x)}{x}=\prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)
$$

evaluated at x and $\mathrm{i} x$, prove (in the manner of Euler ${ }^{1}$) that

$$
\zeta(4)=\frac{\pi^{4}}{90}
$$

[^0]Using the same trick as above, with canny choices of $c x$ for constants $c \in \mathbb{C}$, it is possible to write down all even values of the zeta function. What is $\zeta(8)$?

Problem 2.2. In this question, we prove the Euler product expansion of the zeta function. Recall that

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

First, compute

$$
\left(1-\frac{1}{2^{s}}\right) \zeta(s)
$$

as a series in $s^{t h}$ powers of integers. What do you notice about these integers? Now compute

$$
\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right) \zeta(s)
$$

Again, what do you notice? How can one continue this process to prove the Euler product formula? Where does the product converge?

Problem 2.3. Recall the zeta functional equation:

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

Using this, and the fact that $\Gamma(s) \neq 0$ for all $s \in \mathbb{C}$, prove the following: if ρ is a zero of ζ in the critical strip (so $0<\operatorname{Re}(\rho)<1$) but not on the critical line (so $\operatorname{Re}(\rho) \neq \frac{1}{2}$), then ζ has another zero ρ^{*}, which is the reflection of ρ in the critical line.

3. Lecture 3 - Dirichlet's theorem on primes in arithmetic progressions

Problem 3.1. Let $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ be a totally multiplicative function. This means that

$$
\chi(a b)=\chi(a) \chi(b)
$$

for all $a, b \in \mathbb{Z}$. Define the L-series of χ as

$$
L(\chi, s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

Assuming $L(\chi, s)$ converges for $\operatorname{Re}(s)>d$ for some $d \in \mathbb{R}^{+}$, prove that

$$
L(\chi, s)=\prod_{p \text { prime }}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

for $\operatorname{Re}(s)>d$.
(Hint: write $\frac{1}{1-\frac{\chi(p)}{p^{s}}}$ as a geometric series, then use the unique factorisation of integers.)
Problem 3.2. Fix some integer m. Let G be the set of homomorphisms $(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}$. Prove G is an abelian group under pointwise multiplication, i.e.

$$
(f \cdot g)(a):=f(a) g(a)
$$

What is the identity element of G ? Why is • commutative? Why is it associative? What is the inverse of $f \in G$?

This group G is the group of Dirichlet characters mod m.
Show that the image of any $f \in G$ lies on the unit circle in \mathbb{C}. Show that $|G|=\phi(m)$, where ϕ is Euler's totient function, the number of elements of $\mathbb{Z} / m \mathbb{Z}$ coprime to m.

Finally, prove the following:

Lemma 3.3. Let $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$. Then

$$
\sum_{\chi} \chi(a)= \begin{cases}\phi(m) & \text { if } a=1 \\ 0 & \text { else }\end{cases}
$$

where the sum runs over all χ in the character group $\bmod m$.

And hence, that

Lemma 3.4. Suppose a, n are coprime to m. Then

$$
\sum_{\chi} \chi(a)^{-1} \chi(n)= \begin{cases}\phi(m) & \text { if } n \equiv a(\bmod m) \\ 0 & \text { else }\end{cases}
$$

4. Lecture 4 - Elliptic curves

Problem 4.1. Recall Diophantus' elliptic curve $6 Y-Y^{2}=X^{3}-X$. Find a substitution $x=a X+b, Y=c X+d$ that puts it into short Weierstrass form, i.e. of the form

$$
y^{2}=x^{3}+s x+t
$$

for some $s, t \in \mathbb{Q}$.

Problem 4.2. This problem concerns the group law on an elliptic curve. Let E be the elliptic curve $y^{2}=x^{3}-x+9$, and let $P=(1,3)$. Show that P lies on E. Compute $2 P$ in the following way:
(1) Compute the tangent line ℓ to E at P by implicitly differentiating the equation for E.
(2) Find the point R of E where ℓ intersects E for a third time.
(3) Find the point $2 P$ by reflecting R in the x-axis.

Writing the coordinates of $2 P$ as (x, y), compute the point $(x, y+3)$.

[^0]: ${ }^{1}$ Which is to say, without worrying about technical details like convergence.

