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π

Everyone knows π is the ratio of the circumference of a circle to its
diameter. Hopefully.

It is also the area of the unit circle.

First rigorous approach to approximate π used polygons. The idea: the
area (or perimeter) of a polygon is easy∗ to find, so bound π by drawing
polygons inside and outside the circle.

(a) 6 sides (b) 12 sides
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The polygon method

Archimedes used the polygon method to bound π

3.1408 . . . =
223

71
< π <

22

7
= 3.1428 . . .

by computing with a 96-gon. This process is extremely slow.

It can be
improved somewhat: Liu Hui developed a method that extracted the value

π ≈ 3.1416

from a 96-gon. This went on until the mid-1600s. Using a polygon with
262 ≈ 4.61× 1018 sides, Ludolph van Ceulen approximated π to 35
decimal places. It took 25 years. The last record set with this method was
20 years later, when 38 digits were obtained by Christoph Grienberger.

Lewis Combes (University of Sheffield) Irrational numbers 3 / 16



The polygon method

Archimedes used the polygon method to bound π

3.1408 . . . =
223

71
< π <

22

7
= 3.1428 . . .

by computing with a 96-gon. This process is extremely slow. It can be
improved somewhat: Liu Hui developed a method that extracted the value

π ≈ 3.1416

from a 96-gon.

This went on until the mid-1600s. Using a polygon with
262 ≈ 4.61× 1018 sides, Ludolph van Ceulen approximated π to 35
decimal places. It took 25 years. The last record set with this method was
20 years later, when 38 digits were obtained by Christoph Grienberger.

Lewis Combes (University of Sheffield) Irrational numbers 3 / 16



The polygon method

Archimedes used the polygon method to bound π

3.1408 . . . =
223

71
< π <

22

7
= 3.1428 . . .

by computing with a 96-gon. This process is extremely slow. It can be
improved somewhat: Liu Hui developed a method that extracted the value

π ≈ 3.1416

from a 96-gon. This went on until the mid-1600s. Using a polygon with
262 ≈ 4.61× 1018 sides, Ludolph van Ceulen approximated π to 35
decimal places. It took 25 years.

The last record set with this method was
20 years later, when 38 digits were obtained by Christoph Grienberger.

Lewis Combes (University of Sheffield) Irrational numbers 3 / 16



The polygon method

Archimedes used the polygon method to bound π

3.1408 . . . =
223

71
< π <

22

7
= 3.1428 . . .

by computing with a 96-gon. This process is extremely slow. It can be
improved somewhat: Liu Hui developed a method that extracted the value

π ≈ 3.1416

from a 96-gon. This went on until the mid-1600s. Using a polygon with
262 ≈ 4.61× 1018 sides, Ludolph van Ceulen approximated π to 35
decimal places. It took 25 years. The last record set with this method was
20 years later, when 38 digits were obtained by Christoph Grienberger.

Lewis Combes (University of Sheffield) Irrational numbers 3 / 16



Irrational numbers

A rational number is a number that can be expressed as the ratio of two
integers.

The rationals are written Q. They sit inside the real numbers R. The
rationals are countable and the reals are uncountable, so most numbers
are not rational.

Examples of irrational numbers: π, e,
√
2, log(3),

√
2
√
2
, ζ(3),...

So rational approximations of π are only ever going to be approximations.
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Proof that
√
2 is irrational

Assume
√
2 = a

b , with gcd(a, b) = 1.

Squaring and rearranging, we get

2b2 = a2 ⇝ a = 2k for some m ∈ Z

Subbing it back in, we get 2b2 = (2k)2 = 4k2, and so b2 = 2k2. Once
again, b and k are both integers, so

b = 2n for some n ∈ Z.

Subbing back in, we get 4n2 = 2k2, so

4n2 = 2k2 ⇝ 2n2 = k2.

We note that n and k are both integers, so...
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Proving a number is irrational

A proof that a given number x is irrational is necessarily by contradiction.
That contradiction is (almost) always that there is a smallest natural
number.

Every proof is bespoke; every number we know is irrational is proved by a
proof that uses its particular properties. This makes irrationality proofs
hard.

Numbers we think are irrational but can’t prove: π ± e, πe π/e, πe ,
arctan(π), γ (the Euler gamma constant), ζ(5), ee

e
, cos(cos(1)),...

The list goes on and on.
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Continued fractions

The irrationality of π and e were both proven using continued fractions:

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
.. .

If an is eventually always zero, the fraction represents a rational number. If
this never happens, the fraction is infinite represents an irrational number.

3

5
=

1

1 +
1

1 +
1

2

,
1 +

√
5

2
= 1 +

1

1 +
1

1 +
1

1 +
.. .
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The first proof that π is irrational

It was Johann Lambert who gave the first proof that π is irrational.

tan(x) ≈ x
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The first proof that π is irrational

It was Johann Lambert who gave the first proof that π is irrational.

tan(x) =
x

1− x2

3− x2

5− x2

7− . . .
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Proving e is irrational

The first proof is due to Euler. It uses continued fractions.

This method is due to Fourier.
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Algebraic numbers

The algebraic numbers form a set that generalise the rationals. A number
θ is algebraic if it is the root of some rational polynomial, i.e.

anθ
n + an−1θ

n−1 + . . .+ a1θ + a0 = 0,

with a0, . . . , an ∈ Q.

Lots of familiar numbers are algebraic.
√
2 ⇝ x2 − 2,

i =
√
−1 ⇝ x2 + 1,

cos(2π9 ) ⇝ 8x3 − 6x + 1,

. . .

The sum, product and quotient of two algebraic numbers is still algebraic,
so they form a field.

So we know that
√
2+i

cos( 2π
9
)
is algebraic, even if we can’t immediately “spot”

its polynomial.
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Transcendental numbers

Note: the roots of a polynomial with algebraic coefficients are also
algebraic numbers!

e.g. roots of x2 −
√
2x + 1 are also roots of x4 + 1.

The algebraic numbers form a countable subset of the complex numbers
C, so “most” numbers are not algebraic. Non-algebraic numbers are called
transcendental.

Examples of transcendental numbers: π, e, log(2), eπ
√
163,...

Theorem (Lindemann-Weierstrass)

Suppose θ ̸= 0 is algebraic. Then eθ is transcendental.

Long complicated proof with lots of technical detail. Once it’s done, it is
easy to prove transcendence of lots of numbers.
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Quick proofs of transcendence

Theorem (Lindemann-Weierstrass)

Suppose θ ̸= 0 is algebraic. Then eθ is transcendental.

Theorem

e is transcendental.

Proof.

Use Lindemann-Weierstrass with θ = 1.

Theorem

π is transcendental.

Proof.

Use Lindemann-Weierstrass with θ = iπ.
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Guiding principle

As noted, “most” numbers are transcendental. Numbers like e, π arose
naturally in the history of mathematics and turned out to be
transcendental.

We expect e + π to be transcendental too. The sum of two transcendental
numbers need not be transcendental, e.g. π + (−π) = 0. These two are
transcendental for “the same reason”. Nobody thinks e and π are
transcendental for “the same reason”. But of course, nobody knows.

A general principle in maths: if a number has been written down, studied,
and isn’t obviously algebraic, it is probably transcendental.
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An algebraic surprise

We will play a game with integer sequences. Observe the following
sequence:

1

11

21

1211

111221

312211

...

Can you see the next number?
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An algebraic surprise (cont.)

The sequence 1, 11, 21, 1211, 111221, 312211, . . . is the Conway
look-and-say sequence. The next number is 13112221.

Write Ln for the length of the nth term. Then the number

λ :=
Ln+1

Ln
≈ 1.303577269 . . .

is algebraic, satisfying a polynomial of degree 71.
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An algebraic surprise (cont.)

− 6 + 3x − 6x2 + 12x3 − 4x4 + 7x5 − 7x6 + x7 + 5x9 − 2x10

− 4x11 − 12x12 + 2x13 + 7x14 + 12x15 − 7x16 − 10x17 − 4x18

+ 3x19 + 9x20 − 7x21 − 8x23 + 14x24 − 3x25 + 9x26 + 2x27

− 3x28 − 10x29 − 2x30 − 6x31 + x32 + 10x33 − 3x34 + x35 + 7x36

− 7x37 + 7x38 − 12x39 − 5x40 + 8x41 + 6x42 + 10x43 − 8x44 − 8x45

− 7x46 − 3x47 + 9x48 + x49 + 6x50 + 6x51 − 2x52 − 3x53 − 10x54

− 2x55 + 3x56 + 5x57 + 2x58 − x59 − x60 − x61 − x62 − x63 + x64

+ 2x65 + 2x66 − x67 − 2x68 − x69 + x71
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