Irrational and transcendental numbers: π, e, and others LMS Summer School 2023

Lewis Combes

University of Sheffield

Everyone knows π is the ratio of the circumference of a circle to its diameter. Hopefully.

Everyone knows π is the ratio of the circumference of a circle to its diameter. Hopefully.

It is also the area of the unit circle.

Everyone knows π is the ratio of the circumference of a circle to its diameter. Hopefully.

It is also the area of the unit circle.

First rigorous approach to approximate π used polygons. The idea: the area (or perimeter) of a polygon is easy* to find, so bound π by drawing polygons inside and outside the circle.

Everyone knows π is the ratio of the circumference of a circle to its diameter. Hopefully.

It is also the area of the unit circle.

First rigorous approach to approximate π used polygons. The idea: the area (or perimeter) of a polygon is easy* to find, so bound π by drawing polygons inside and outside the circle.

(g) 6 sides

(h) 12 sides

The polygon method

Archimedes used the polygon method to bound π

$$
3.1408 \ldots=\frac{223}{71}<\pi<\frac{22}{7}=3.1428 \ldots
$$

by computing with a 96 -gon. This process is extremely slow.

The polygon method

Archimedes used the polygon method to bound π

$$
3.1408 \ldots=\frac{223}{71}<\pi<\frac{22}{7}=3.1428 \ldots
$$

by computing with a 96 -gon. This process is extremely slow. It can be improved somewhat: Liu Hui developed a method that extracted the value

$$
\pi \approx 3.1416
$$

from a 96-gon.

The polygon method

Archimedes used the polygon method to bound π

$$
3.1408 \ldots=\frac{223}{71}<\pi<\frac{22}{7}=3.1428 \ldots
$$

by computing with a 96 -gon. This process is extremely slow. It can be improved somewhat: Liu Hui developed a method that extracted the value

$$
\pi \approx 3.1416
$$

from a 96-gon. This went on until the mid-1600s. Using a polygon with $2^{62} \approx 4.61 \times 10^{18}$ sides, Ludolph van Ceulen approximated π to 35 decimal places. It took 25 years.

The polygon method

Archimedes used the polygon method to bound π

$$
3.1408 \ldots=\frac{223}{71}<\pi<\frac{22}{7}=3.1428 \ldots
$$

by computing with a 96 -gon. This process is extremely slow. It can be improved somewhat: Liu Hui developed a method that extracted the value

$$
\pi \approx 3.1416
$$

from a 96-gon. This went on until the mid-1600s. Using a polygon with $2^{62} \approx 4.61 \times 10^{18}$ sides, Ludolph van Ceulen approximated π to 35 decimal places. It took 25 years. The last record set with this method was 20 years later, when 38 digits were obtained by Christoph Grienberger.

Irrational numbers

A rational number is a number that can be expressed as the ratio of two integers.

Irrational numbers

A rational number is a number that can be expressed as the ratio of two integers.

The rationals are written \mathbb{Q}. They sit inside the real numbers \mathbb{R}. The rationals are countable and the reals are uncountable, so most numbers are not rational.

Irrational numbers

A rational number is a number that can be expressed as the ratio of two integers.

The rationals are written \mathbb{Q}. They sit inside the real numbers \mathbb{R}. The rationals are countable and the reals are uncountable, so most numbers are not rational.

Examples of irrational numbers: $\pi, e, \sqrt{2}, \log (3), \sqrt{2}^{\sqrt{2}}, \zeta(3), \ldots$

Irrational numbers

A rational number is a number that can be expressed as the ratio of two integers.

The rationals are written \mathbb{Q}. They sit inside the real numbers \mathbb{R}. The rationals are countable and the reals are uncountable, so most numbers are not rational.

Examples of irrational numbers: $\pi, e, \sqrt{2}, \log (3), \sqrt{2}^{\sqrt{2}}, \zeta(3), \ldots$
So rational approximations of π are only ever going to be approximations.

Proof that $\sqrt{2}$ is irrational

Assume $\sqrt{2}=\frac{a}{b}$, with $\operatorname{gcd}(a, b)=1$.

Proof that $\sqrt{2}$ is irrational

Assume $\sqrt{2}=\frac{a}{b}$, with $\operatorname{gcd}(a, b)=1$.
Squaring and rearranging, we get

$$
2 b^{2}=a^{2} \rightsquigarrow a=2 k \text { for some } m \in \mathbb{Z}
$$

Proof that $\sqrt{2}$ is irrational

Assume $\sqrt{2}=\frac{a}{b}$, with $\operatorname{gcd}(a, b)=1$.
Squaring and rearranging, we get

$$
2 b^{2}=a^{2} \rightsquigarrow a=2 k \text { for some } m \in \mathbb{Z}
$$

Subbing it back in, we get $2 b^{2}=(2 k)^{2}=4 k^{2}$, and so $b^{2}=2 k^{2}$. Once again, b and k are both integers, so

$$
b=2 n \text { for some } n \in \mathbb{Z}
$$

Proof that $\sqrt{2}$ is irrational

Assume $\sqrt{2}=\frac{a}{b}$, with $\operatorname{gcd}(a, b)=1$.
Squaring and rearranging, we get

$$
2 b^{2}=a^{2} \rightsquigarrow a=2 k \text { for some } m \in \mathbb{Z}
$$

Subbing it back in, we get $2 b^{2}=(2 k)^{2}=4 k^{2}$, and so $b^{2}=2 k^{2}$. Once again, b and k are both integers, so

$$
b=2 n \text { for some } n \in \mathbb{Z}
$$

Subbing back in, we get $4 n^{2}=2 k^{2}$, so

$$
4 n^{2}=2 k^{2} \rightsquigarrow 2 n^{2}=k^{2} .
$$

Proof that $\sqrt{2}$ is irrational

Assume $\sqrt{2}=\frac{a}{b}$, with $\operatorname{gcd}(a, b)=1$.
Squaring and rearranging, we get

$$
2 b^{2}=a^{2} \rightsquigarrow a=2 k \text { for some } m \in \mathbb{Z}
$$

Subbing it back in, we get $2 b^{2}=(2 k)^{2}=4 k^{2}$, and so $b^{2}=2 k^{2}$. Once again, b and k are both integers, so

$$
b=2 n \text { for some } n \in \mathbb{Z}
$$

Subbing back in, we get $4 n^{2}=2 k^{2}$, so

$$
4 n^{2}=2 k^{2} \rightsquigarrow 2 n^{2}=k^{2} .
$$

We note that n and k are both integers, so...

Proving a number is irrational

A proof that a given number x is irrational is necessarily by contradiction. That contradiction is (almost) always that there is a smallest natural number.

Proving a number is irrational

A proof that a given number x is irrational is necessarily by contradiction. That contradiction is (almost) always that there is a smallest natural number.

Every proof is bespoke; every number we know is irrational is proved by a proof that uses its particular properties. This makes irrationality proofs hard.

Proving a number is irrational

A proof that a given number x is irrational is necessarily by contradiction. That contradiction is (almost) always that there is a smallest natural number.

Every proof is bespoke; every number we know is irrational is proved by a proof that uses its particular properties. This makes irrationality proofs hard.

Numbers we think are irrational but can't prove: $\pi \pm e, \pi e \pi / e, \pi^{e}$, $\arctan (\pi), \gamma($ the Euler gamma constant $), \zeta(5), e^{e^{e}}, \cos (\cos (1)), \ldots$

Proving a number is irrational

A proof that a given number x is irrational is necessarily by contradiction. That contradiction is (almost) always that there is a smallest natural number.

Every proof is bespoke; every number we know is irrational is proved by a proof that uses its particular properties. This makes irrationality proofs hard.

Numbers we think are irrational but can't prove: $\pi \pm e, \pi e \pi / e, \pi^{e}$, $\arctan (\pi), \gamma($ the Euler gamma constant $), \zeta(5), e^{e^{e}}, \cos (\cos (1)), \ldots$

The list goes on and on.

Continued fractions

The irrationality of π and e were both proven using continued fractions:

$$
b_{0}+\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\frac{a_{3}}{b_{3}+\frac{a_{4}}{b_{4}+\ddots}}}}
$$

If a_{n} is eventually always zero, the fraction represents a rational number. If this never happens, the fraction is infinite represents an irrational number.

Continued fractions

The irrationality of π and e were both proven using continued fractions:

$$
b_{0}+\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\frac{a_{3}}{b_{3}+\frac{a_{4}}{b_{4}+\ddots}}}}
$$

If a_{n} is eventually always zero, the fraction represents a rational number. If this never happens, the fraction is infinite represents an irrational number.

$$
\frac{3}{5}=\frac{1}{1+\frac{1}{1+\frac{1}{2}}}, \quad \frac{1+\sqrt{5}}{2}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}}
$$

The first proof that π is irrational

It was Johann Lambert who gave the first proof that π is irrational.

$$
\tan (x) \approx x
$$

The first proof that π is irrational

It was Johann Lambert who gave the first proof that π is irrational.

$$
\tan (x) \approx \frac{x}{1-x^{2}}
$$

The first proof that π is irrational

It was Johann Lambert who gave the first proof that π is irrational.

$$
\tan (x) \approx \frac{x}{1-\frac{x^{2}}{3}}
$$

The first proof that π is irrational

It was Johann Lambert who gave the first proof that π is irrational.

$$
\tan (x) \approx \frac{x}{1-\frac{x^{2}}{3-\frac{x^{2}}{5}}}
$$

The first proof that π is irrational

It was Johann Lambert who gave the first proof that π is irrational.

$$
\tan (x) \approx \frac{x}{1-\frac{x^{2}}{3-\frac{x^{2}}{5-\frac{x^{2}}{7}}}}
$$

The first proof that π is irrational

It was Johann Lambert who gave the first proof that π is irrational.

$$
\tan (x)=\frac{x}{1-\frac{x^{2}}{3-\frac{x^{2}}{5-\frac{x^{2}}{7-\ddots}}}}
$$

Proving e is irrational

The first proof is due to Euler. It uses continued fractions.

This method is due to Fourier.

Algebraic numbers

The algebraic numbers form a set that generalise the rationals. A number θ is algebraic if it is the root of some rational polynomial, i.e.

$$
a_{n} \theta^{n}+a_{n-1} \theta^{n-1}+\ldots+a_{1} \theta+a_{0}=0
$$

with $a_{0}, \ldots, a_{n} \in \mathbb{Q}$.

Algebraic numbers

The algebraic numbers form a set that generalise the rationals. A number θ is algebraic if it is the root of some rational polynomial, i.e.

$$
a_{n} \theta^{n}+a_{n-1} \theta^{n-1}+\ldots+a_{1} \theta+a_{0}=0
$$

with $a_{0}, \ldots, a_{n} \in \mathbb{Q}$. Lots of familiar numbers are algebraic.

- $\sqrt{2} \rightsquigarrow x^{2}-2$,
- $\mathrm{i}=\sqrt{-1} \rightsquigarrow x^{2}+1$,
- $\cos \left(\frac{2 \pi}{9}\right) \rightsquigarrow 8 x^{3}-6 x+1$,
- ...

Algebraic numbers

The algebraic numbers form a set that generalise the rationals. A number θ is algebraic if it is the root of some rational polynomial, i.e.

$$
a_{n} \theta^{n}+a_{n-1} \theta^{n-1}+\ldots+a_{1} \theta+a_{0}=0,
$$

with $a_{0}, \ldots, a_{n} \in \mathbb{Q}$. Lots of familiar numbers are algebraic.

- $\sqrt{2} \rightsquigarrow x^{2}-2$,
- $\mathrm{i}=\sqrt{-1} \rightsquigarrow x^{2}+1$,
- $\cos \left(\frac{2 \pi}{9}\right) \rightsquigarrow 8 x^{3}-6 x+1$,
- ...

The sum, product and quotient of two algebraic numbers is still algebraic, so they form a field.

Algebraic numbers

The algebraic numbers form a set that generalise the rationals. A number θ is algebraic if it is the root of some rational polynomial, i.e.

$$
a_{n} \theta^{n}+a_{n-1} \theta^{n-1}+\ldots+a_{1} \theta+a_{0}=0
$$

with $a_{0}, \ldots, a_{n} \in \mathbb{Q}$. Lots of familiar numbers are algebraic.

- $\sqrt{2} \rightsquigarrow x^{2}-2$,
- $\mathrm{i}=\sqrt{-1} \rightsquigarrow x^{2}+1$,
- $\cos \left(\frac{2 \pi}{9}\right) \rightsquigarrow 8 x^{3}-6 x+1$,
- ...

The sum, product and quotient of two algebraic numbers is still algebraic, so they form a field.

So we know that $\frac{\sqrt{2}+\mathrm{i}}{\cos \left(\frac{2 \pi}{9}\right)}$ is algebraic, even if we can't immediately "spot" its polynomial.

Transcendental numbers

Note: the roots of a polynomial with algebraic coefficients are also algebraic numbers!
e.g. roots of $x^{2}-\sqrt{2} x+1$ are also roots of $x^{4}+1$.

Transcendental numbers

Note: the roots of a polynomial with algebraic coefficients are also algebraic numbers!
e.g. roots of $x^{2}-\sqrt{2} x+1$ are also roots of $x^{4}+1$.

The algebraic numbers form a countable subset of the complex numbers \mathbb{C}, so "most" numbers are not algebraic. Non-algebraic numbers are called transcendental.

Examples of transcendental numbers: $\pi, e, \log (2), e^{\pi \sqrt{163}}, \ldots$

Transcendental numbers

Note: the roots of a polynomial with algebraic coefficients are also algebraic numbers!
e.g. roots of $x^{2}-\sqrt{2} x+1$ are also roots of $x^{4}+1$.

The algebraic numbers form a countable subset of the complex numbers \mathbb{C}, so "most" numbers are not algebraic. Non-algebraic numbers are called transcendental.

Examples of transcendental numbers: $\pi, e, \log (2), e^{\pi \sqrt{163}}, \ldots$

Theorem (Lindemann-Weierstrass)

Suppose $\theta \neq 0$ is algebraic. Then e^{θ} is transcendental.
Long complicated proof with lots of technical detail. Once it's done, it is easy to prove transcendence of lots of numbers.

Quick proofs of transcendence

Theorem (Lindemann-Weierstrass)

Suppose $\theta \neq 0$ is algebraic. Then e^{θ} is transcendental.
Theorem
e is transcendental.

Quick proofs of transcendence

Theorem (Lindemann-Weierstrass)

Suppose $\theta \neq 0$ is algebraic. Then e^{θ} is transcendental.

```
Theorem \(e\) is transcendental.
```


Proof.

Use Lindemann-Weierstrass with $\theta=1$.

Quick proofs of transcendence

Theorem (Lindemann-Weierstrass)

Suppose $\theta \neq 0$ is algebraic. Then e^{θ} is transcendental.

```
Theorem
\(e\) is transcendental.
```


Proof.

Use Lindemann-Weierstrass with $\theta=1$.

Theorem
π is transcendental.

Quick proofs of transcendence

Theorem (Lindemann-Weierstrass)

Suppose $\theta \neq 0$ is algebraic. Then e^{θ} is transcendental.

Theorem

e is transcendental.
Proof.
Use Lindemann-Weierstrass with $\theta=1$.

Theorem

π is transcendental.

Proof.

Use Lindemann-Weierstrass with $\theta=\mathrm{i} \pi$.

Guiding principle

As noted, "most" numbers are transcendental. Numbers like e, π arose naturally in the history of mathematics and turned out to be transcendental.

We expect $e+\pi$ to be transcendental too. The sum of two transcendental numbers need not be transcendental, e.g. $\pi+(-\pi)=0$. These two are transcendental for "the same reason". Nobody thinks e and π are transcendental for "the same reason". But of course, nobody knows.

A general principle in maths: if a number has been written down, studied, and isn't obviously algebraic, it is probably transcendental.

An algebraic surprise

We will play a game with integer sequences. Observe the following sequence:

Can you see the next number?

An algebraic surprise (cont.)

The sequence $1,11,21,1211,111221,312211, \ldots$ is the Conway look-and-say sequence. The next number is 13112221.

An algebraic surprise (cont.)

The sequence $1,11,21,1211,111221,312211, \ldots$ is the Conway look-and-say sequence. The next number is 13112221.

Write L_{n} for the length of the $n^{\text {th }}$ term. Then the number

$$
\lambda:=\frac{L_{n+1}}{L_{n}} \approx 1.303577269 \ldots
$$

An algebraic surprise (cont.)

The sequence $1,11,21,1211,111221,312211, \ldots$ is the Conway look-and-say sequence. The next number is 13112221.

Write L_{n} for the length of the $n^{\text {th }}$ term. Then the number

$$
\lambda:=\frac{L_{n+1}}{L_{n}} \approx 1.303577269 \ldots
$$

is algebraic, satisfying a polynomial of degree 71 .

An algebraic surprise (cont.)

$$
\begin{aligned}
& -6+3 x-6 x^{2}+12 x^{3}-4 x^{4}+7 x^{5}-7 x^{6}+x^{7}+5 x^{9}-2 x^{10} \\
& -4 x^{11}-12 x^{12}+2 x^{13}+7 x^{14}+12 x^{15}-7 x^{16}-10 x^{17}-4 x^{18} \\
& +3 x^{19}+9 x^{20}-7 x^{21}-8 x^{23}+14 x^{24}-3 x^{25}+9 x^{26}+2 x^{27} \\
& -3 x^{28}-10 x^{29}-2 x^{30}-6 x^{31}+x^{32}+10 x^{33}-3 x^{34}+x^{35}+7 x^{36} \\
& -7 x^{37}+7 x^{38}-12 x^{39}-5 x^{40}+8 x^{41}+6 x^{42}+10 x^{43}-8 x^{44}-8 x^{45} \\
& -7 x^{46}-3 x^{47}+9 x^{48}+x^{49}+6 x^{50}+6 x^{51}-2 x^{52}-3 x^{53}-10 x^{54} \\
& -2 x^{55}+3 x^{56}+5 x^{57}+2 x^{58}-x^{59}-x^{60}-x^{61}-x^{62}-x^{63}+x^{64} \\
& +2 x^{65}+2 x^{66}-x^{67}-2 x^{68}-x^{69}+x^{71}
\end{aligned}
$$

