Primes in arithmetic progressions

LMS Summer School 2023

Lewis Combes

University of Sheffield

Lewis Combes (University of Sheffield) Primes in arithmetic progressions



Arithmetic progressions

An arithmetic progression is a sequence of integers of the form
a,a+d,a+2d,a+3d,...

That is, they are the values of functions of the form a 4 dn at integers n.
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Arithmetic progressions

An arithmetic progression is a sequence of integers of the form
a,a+d,a+2d,a+3d,...

That is, they are the values of functions of the form a 4 dn at integers n.

A prime in the arithmetic progression is a prime number p of the form

a -+ dn. So, in particular, we have

p = a (mod d).
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Arithmetic progressions

An arithmetic progression is a sequence of integers of the form
a,a+d,a+2d,a+3d,...

That is, they are the values of functions of the form a 4 dn at integers n.

A prime in the arithmetic progression is a prime number p of the form
a -+ dn. So, in particular, we have

p = a (mod d).

A natural immediate question is the following: for a given a and d, how
many primes are there in the arithmetic progression
a,a+d,a+2d,a+3d,...7
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Some examples

If a=1and d =2, we get
1,3,5,7,9,11,13,15,17, ...

There are infinitely many primes in this arithmetic progression.
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Some examples

If a=1and d =2, we get
1,3,5,7,9,11,13,15,17, ...
There are infinitely many primes in this arithmetic progression.

How many primes are there in the arithmetic progression
a,a+d,a+2d,a+3d,...7
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Some examples

If a=1and d =2, we get
1,3,5,7,9,11,13,15,17, ...
There are infinitely many primes in this arithmetic progression.

How many primes are there in the arithmetic progression
a,a+d,a+2d,a+3d,...7

If gcd(a, d) # 1 then there are NONE.
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We start with an easy case: d = 4. Let's start making a list.

p 23|57 ]11|13][17]19]23]29|31]37]41
p(mod4) 23133 |11 [3][3]1]|3][1]1
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We start with an easy case: d = 4. Let's start making a list.

p 23|57 ]11|13][17]19]23]29|31]37]41
p(mod4) 23133 |11 [3][3]1]|3][1]1
Two important classes: p =1 (mod 4) and p = 3 (mod 4). With a

computer, we can easily find the number of primes of each kind up to
various bounds.
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mod 4 (cont.)

== p=1mod4 == p=3mod4

20000 40000 60000 80000 100000
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Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are

ever-so-slightly more primes in the 3 class than the 1 class. This leads to
some conjectures:
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Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are
ever-so-slightly more primes in the 3 class than the 1 class. This leads to
some conjectures:

Conjecture (Size of classes)

There are infinitely many primes p = 1,3 (mod 4).
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Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are
ever-so-slightly more primes in the 3 class than the 1 class. This leads to
some conjectures:

Conjecture (Size of classes)

There are infinitely many primes p = 1,3 (mod 4).

Conjecture (Ratio of sizes)

Write P;(X) = #{p | p prime,p =i (mod 4),p < X}. Then

lim P(X)

=1
X—00 P3(X)
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Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are
ever-so-slightly more primes in the 3 class than the 1 class. This leads to
some conjectures:

Conjecture (Size of classes)

There are infinitely many primes p = 1,3 (mod 4).

Conjecture (Ratio of sizes)
Write P;(X) = #{p | p prime,p =i (mod 4),p < X}. Then

lim P(X)

=1
X—00 P3(X)

Conjecture (The race to infinity)
P1(X) < P3(X) for all X € (0, 0).
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Size of classes

The first conjecture states that there are infinitely many primes
p=1,3 (mod 4).

This is TRUE, which we now prove.
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Size of classes

The first conjecture states that there are infinitely many primes
p=1,3 (mod 4).

This is TRUE, which we now prove for primes p = 3 (mod 4).

The case p =1 (mod 4) works almost the same, but there is a technical
hitch that requires some work to solve.
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Dirichlet’'s theorem

Theorem (Dirichlet’s theorem on primes in arithmetic progressions)

Let a,d € N such that gcd(a, d) = 1. Then there are infinitely many
primes p = a (mod d).
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Dirichlet’'s theorem

Theorem (Dirichlet’s theorem on primes in arithmetic progressions)

Let a,d € N such that gcd(a, d) = 1. Then there are infinitely many
primes p = a (mod d).

The proof essentially boils down to proving that the sum
>
p=a (mod d) P

diverges. The main techniques are some group theory and some complex
analysis.
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Dirichlet characters

A Dirichlet character is a function x : Z/mZ — C such that

x(ab) = x(a)x(b)

for all a, b € Z. We can also think of them as functions Z — C by
precomposing with the (mod m) map.
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Dirichlet characters

A Dirichlet character is a function x : Z/mZ — C such that

x(ab) = x(a)x(b)

for all a, b € Z. We can also think of them as functions Z — C by
precomposing with the (mod m) map.

Its L-function is the function
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Dirichlet characters

A Dirichlet character is a function x : Z/mZ — C such that

x(ab) = x(a)x(b)

for all a, b € Z. We can also think of them as functions Z — C by
precomposing with the (mod m) map.

Its L-function is the function

L(x.s) = x(n)

ns

n=1

Compare this to the Riemann zeta function

<(s)=Zé
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Dirichlet characters (cont.)

The L-function also has an Euler product

Los) = ] (1— X(”)>

s
p prime p
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Dirichlet characters (cont.)

The L-function also has an Euler product

Los) = ] (1— X[(J’j)>1.

p prime

Again compare to
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Dirichlet characters mod 4
n_|

1]2]3 |
B
Xg(n)].

We want to know the values of L(x,1).

2
0
0

o O+~
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Dirichlet characters mod 4

n [1]2] 3|4
xi(n) [1]0 1 0
Xg(n) 110 0
We want to know the values of L(x,1).
When x = x1, we have the identity
1 1
3T T T s
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Dirichlet characters mod 4 (cont.)

Meanwhile, ) ) )
As s — 1, this approaches the value
1 1 1
L N=1--+=-—-—=-+...=
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Dirichlet characters mod 4 (cont.)

Meanwhile,
L(Xg,s)zl—%—ké—%—l—...
As s — 1, this approaches the value
1 1

1
L H=1--+-—=-+...=

N

So L(x1,1) diverges, and L(x2,1) converges.

Primes in arithmetic progressions

Lewis Combes (University of Sheffield)



Dirichlet's theorem (again)

Using the Euler product, we get

log(L Zlog< x(p)>
:z( ; ) <> P

_ZXP X, 5).
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Dirichlet's theorem (again)

Using the Euler product, we get

log(L Zlog< x(p)>
:z( ,g ) x <> RN
_ZXP X, 5).

Easy to show that A(y,s) is bounded as s — 1.
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Dirichlet's theorem (some more)

log(L(x, s ZX(P

X; 5)-

We note

08(L(x1,9) + log(L(va:5)) = 3 LX) a4 A s).
p
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Dirichlet's theorem (some more)

log(L(x, s ZX(P

X; 5)-

We note

Z x1(p) + x2(p)

e + A(x1,5) + Alx2, s)-

log(L(x1,5)) + log(L(x2,s

2 if p=1 (mod 4)

x1(p) + x2(p) = {0 if p = 3 (mod 4)
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Dirichlet's theorem (some more)

log(L ZX(P

X; 5)-

We note

Z x1(p) + x2(p)

e + A(x1,5) + Alx2, s)-

log(L(x1,5)) + log(L(x2,s

2 if p=1 (mod 4)

x1(p) + x2(p) = {O if p = 3 (mod 4)

So

log(L(x1,5)) +log(L02 ) =2 3 =+ A(xa,s) + A(xar 9).
p=1 (mod 4)
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Dirichlet's theorem (yet more)

We can also reprove that there are infinitely many primes = 3 (mod 4):

0 if p=1(mod4)

x1(p) — x2(p) = {2 if p =3 (mod 4)
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Dirichlet's theorem (yet more)

We can also reprove that there are infinitely many primes = 3 (mod 4):

0 if p=1(mod4)

x1(p) — x2(p) = {2 if p =3 (mod 4)

SO

log(L(x1,5)) —log(L0zs) =2 3 =+ A(xas) — A(xa, ).
p=3 (mod 4)
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Dirichlet characters mod 5

n |[1] 2|3 ]| 4]5
xi(n) [ 1] 1 1 110
xe(n) 1] 1 | =i]-1]0
x3(n)|1|—-1|—-1] 1 |0
xa(n) 1| -1 | i | -1]0
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Dirichlet characters mod 5

n |[1] 2|3 ]| 4]5
xi(n) [ 1] 1 1 110
xe(n) 1] 1 | =i]-1]0
x3(n)|1|—-1|—-1] 1 |0
xa(n) 1| -1 | i | -1]0

In a similar way, we have

L(x1,1) =00, L(xi,1)<oofor2<i<4
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Dirichlet characters mod 5

n |[1] 2|3 ]| 4]5
xi(n) [ 1] 1 1 110
xe(n) 1] 1 | =i]-1]0
x3(n)|1|—-1|—-1] 1 |0
xa(n) 1| -1 | i | -1]0

In a similar way, we have
L(x1,1) =00, L(xi,1)<oofor2<i<4

Then we use orthogonality relations to pick out individual classes.
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Dirichlet characters mod 5

n |[1] 2|3 ]| 4]5
xi(n) [ 1] 1 1 110
xe(n) 1] 1 | =i]-1]0
x3(n)|1|—-1|—-1] 1 |0
xa(n) 1| -1 | i | -1]0

In a similar way, we have
L(x1,1) =00, L(xi,1)<oofor2<i<4

Then we use orthogonality relations to pick out individual classes.
Eg.

4 if p=2 (mod 5)

x1(p) — ixa(p) — x3(p) +ixa(p) = {0 if p 2 2 (mod 5)
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Dirichlet characters mod 5

4 if p=2 (mod 5)

x1(p) —ixa(p) — x3(p) +ixa(p) = {0 if p# 2 (mod 5)

So

1
L(x1,1) + (other L-values < o0) =4 Z — + (constants)
p=2 (mod 5) P
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Dirichlet characters mod 5

4 if p=2 (mod 5)

x1(p) —ixa(p) — x3(p) +ixa(p) = {0 if p# 2 (mod 5)

So

1
L(x1,1) + (other L-values < o0) =4 Z — + (constants)
p=2 (mod 5) P

The method generalises to all moduli d and all residues a to prove

>

1
p=a (mod d) P

diverges.
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Dirichlet’s theorem in general

@ L(x1,1) diverges, the rest converge.
@ Orthogonality of characters lets us pick out sza (mod d) %.
@ Connection via Euler product relates the two.

That's it!
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Dirichlet’s theorem in general

@ L(x1,1) diverges, the rest converge.
@ Orthogonality of characters lets us pick out sza (mod d) %.
@ Connection via Euler product relates the two.

That's it*!
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The ratio conjecture

We also claimed that
i PHX)
im
X—=00 P3(X)
This is also TRUE. We will not prove it from first principles, as it requires
a quite advanced result.
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The ratio conjecture

We also claimed that
P1(X)

lim
X350 P3(X)
This is also TRUE. We will not prove it from first principles, as it requires
a quite advanced result.

We define the density of a set S C N as

. Anlne S n< X}
D) = i T TheN. <Xt

So D(2N) =1, D3N) = 1, ...
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The ratio conjecture

We also claimed that
P1(X)

lim
X350 P3(X)
This is also TRUE. We will not prove it from first principles, as it requires
a quite advanced result.

We define the density of a set S C N as

. Anlne S n< X}
D) = i T TheN. <Xt

So D(2N) =1, D3N) = 1, ...

Also, D(P) = 0, where P is the set of primes.
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The ratio conjecture (cont.)

Further, we can define the relative density of two sets S, T C N as

. An|neSn< X}
D(S’T)_Xlinoo{n|n€ T,n< X}

So D(4N,2N) = %, D(35N,5N) = 1.
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The ratio conjecture (cont.)

Further, we can define the relative density of two sets S, T C N as

. {n|neS,n<X}
DS, T)= 1 .
(5.7) Xinoo{n|n€ T,n< X}

So D(4N,2N) = 1, D(35N,5N) = 1 .

We want to know about the relative densities of subsets of P. Write
Si={p=1(mod 4)}, and S3 = {p = 3 (mod 4)}. Since

SiNS3=0, S US;="P\{2},

and we suspect that

PX) _ wn #1
X—00 P3(X) #5S3’

we predict that D(S1,P) = D(S3,P) =
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The ratio conjecture (cont.)

Further, we can define the relative density of two sets S, T C N as

. An|lneSn< X}
DS, T) = Jim e T <X}

So D(4N,2N) = 1, D(35N,5N) = 1 .

We want to know about the relative densities of subsets of P. Write
S1={p=1 (mod 4)}, and S3 = {p = 3 (mod 4)}. Since

SiNS3=0, S US;="P\{2},

and we suspect that

Ly e_n #5
X—00 P3(X) #5S3’

we predict that D(S1,P) = D(S3,P) = %
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Chebotaryov Density

Theorem (Chebotaryov's density theorem)

Writing S, ,, for the set of primes congruent to a mod n, we have

0 if ged(a, n) #1

D Sa,nap = .
( ) {ﬁ if ged(a,n) =1

Here ¢(n) is the Euler totient function.

o(n)=#{a|1<a<n, ged(a,n) =1}
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Chebotaryov Density

Theorem (Chebotaryov's density theorem)

Writing S, ,, for the set of primes congruent to a mod n, we have

0 if ged(a, n) #1

D Sa,nap = .
( ) {ﬁ if ged(a,n) =1

Here ¢(n) is the Euler totient function.

o(n)=#{a|1<a<n, ged(a,n) =1}

So )
D(51,P) = D(S3,P) = 5>
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New prime number theorems

Recall the prime number theorem:

X
0= Tog(x)

+E(X)

PNT + Dirichlet =

m(X,1 (mod 4)) = ;Iog);X)

+ E1(X)

(X3 (mod 4)) = ;Iog)(<X) + E(X)
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The race to infinity

Recall the conjecture:

Conjecture (The race to infinity)
P1(X) < P3(X) for all X € (0, 00).
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The race to infinity

Recall the conjecture:

Conjecture (The race to infinity)
P1(X) < P3(X) for all X € (0, 00).

This is conjecture is FALSE.
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The race to infinity

Recall the conjecture:

Conjecture (The race to infinity)
P1(X) < P3(X) for all X € (0, 00).

This is conjecture is FALSE. In fact, it is VERY FALSE. The quantity
P3(X) — P1(X)

changes sign infinitely many times.
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