Primes in arithmetic progressions LMS Summer School 2023

Lewis Combes

University of Sheffield

Arithmetic progressions

An arithmetic progression is a sequence of integers of the form

$$
a, a+d, a+2 d, a+3 d, \ldots
$$

That is, they are the values of functions of the form $a+d n$ at integers n.

Arithmetic progressions

An arithmetic progression is a sequence of integers of the form

$$
a, a+d, a+2 d, a+3 d, \ldots
$$

That is, they are the values of functions of the form $a+d n$ at integers n.
A prime in the arithmetic progression is a prime number p of the form $a+d n$. So, in particular, we have

$$
p \equiv a(\bmod d)
$$

Arithmetic progressions

An arithmetic progression is a sequence of integers of the form

$$
a, a+d, a+2 d, a+3 d, \ldots
$$

That is, they are the values of functions of the form $a+d n$ at integers n.
A prime in the arithmetic progression is a prime number p of the form $a+d n$. So, in particular, we have

$$
p \equiv a(\bmod d)
$$

A natural immediate question is the following: for a given a and d, how many primes are there in the arithmetic progression
$a, a+d, a+2 d, a+3 d, \ldots ?$

Some examples

If $a=1$ and $d=2$, we get

$$
1,3,5,7,9,11,13,15,17, \ldots
$$

There are infinitely many primes in this arithmetic progression.

Some examples

If $a=1$ and $d=2$, we get

$$
1,3,5,7,9,11,13,15,17, \ldots
$$

There are infinitely many primes in this arithmetic progression.
How many primes are there in the arithmetic progression $a, a+d, a+2 d, a+3 d, \ldots$?

Some examples

If $a=1$ and $d=2$, we get

$$
1,3,5,7,9,11,13,15,17, \ldots
$$

There are infinitely many primes in this arithmetic progression.
How many primes are there in the arithmetic progression $a, a+d, a+2 d, a+3 d, \ldots$?

If $\operatorname{gcd}(a, d) \neq 1$ then there are NONE.

Primes mod 4

We start with an easy case: $d=4$. Let's start making a list.

p	2	3	5	7	11	13	17	19	23	29	31	37	41
$p(\bmod 4)$	2	3	1	3	3	1	1	3	3	1	3	1	1

Primes mod 4

We start with an easy case: $d=4$. Let's start making a list.

p	2	3	5	7	11	13	17	19	23	29	31	37	41
$p(\bmod 4)$	2	3	1	3	3	1	1	3	3	1	3	1	1

Two important classes: $p \equiv 1(\bmod 4)$ and $p \equiv 3(\bmod 4)$. With a computer, we can easily find the number of primes of each kind up to various bounds.

Primes mod 4 (cont.)

$-p=1 \bmod 4-p=3 \bmod 4$

Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are ever-so-slightly more primes in the 3 class than the 1 class. This leads to some conjectures:

Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are ever-so-slightly more primes in the 3 class than the 1 class. This leads to some conjectures:

Conjecture (Size of classes)

There are infinitely many primes $p \equiv 1,3(\bmod 4)$.

Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are ever-so-slightly more primes in the 3 class than the 1 class. This leads to some conjectures:

Conjecture (Size of classes)

There are infinitely many primes $p \equiv 1,3(\bmod 4)$.

Conjecture (Ratio of sizes)

Write $P_{i}(X)=\#\{p \mid p$ prime $, p \equiv i(\bmod 4), p \leq X\}$. Then

$$
\lim _{X \rightarrow \infty} \frac{P_{1}(X)}{P_{3}(X)}=1
$$

Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are ever-so-slightly more primes in the 3 class than the 1 class. This leads to some conjectures:

Conjecture (Size of classes)

There are infinitely many primes $p \equiv 1,3(\bmod 4)$.

Conjecture (Ratio of sizes)

Write $P_{i}(X)=\#\{p \mid p$ prime $, p \equiv i(\bmod 4), p \leq X\}$. Then

$$
\lim _{X \rightarrow \infty} \frac{P_{1}(X)}{P_{3}(X)}=1
$$

Conjecture (The race to infinity)
$P_{1}(X) \leq P_{3}(X)$ for all $X \in(0, \infty)$.

Size of classes

The first conjecture states that there are infinitely many primes $p \equiv 1,3(\bmod 4)$.

This is TRUE, which we now prove.

Size of classes

The first conjecture states that there are infinitely many primes $p \equiv 1,3(\bmod 4)$.

This is TRUE, which we now prove for primes $p \equiv 3(\bmod 4)$.
The case $p \equiv 1(\bmod 4)$ works almost the same, but there is a technical hitch that requires some work to solve.

Dirichlet's theorem

> Theorem (Dirichlet's theorem on primes in arithmetic progressions) Let $a, d \in \mathbb{N}$ such that $\operatorname{gcd}(a, d)=1$. Then there are infinitely many primes $p \equiv a(\bmod d)$.

Dirichlet's theorem

Theorem (Dirichlet's theorem on primes in arithmetic progressions)
Let $a, d \in \mathbb{N}$ such that $\operatorname{gcd}(a, d)=1$. Then there are infinitely many primes $p \equiv a(\bmod d)$.

The proof essentially boils down to proving that the sum

$$
\sum_{p \equiv a(\bmod d)} \frac{1}{p}
$$

diverges. The main techniques are some group theory and some complex analysis.

Dirichlet characters

A Dirichlet character is a function $\chi: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{C}$ such that

$$
\chi(a b)=\chi(a) \chi(b)
$$

for all $a, b \in \mathbb{Z}$. We can also think of them as functions $\mathbb{Z} \rightarrow \mathbb{C}$ by precomposing with the $(\bmod m)$ map.

Dirichlet characters

A Dirichlet character is a function $\chi: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{C}$ such that

$$
\chi(a b)=\chi(a) \chi(b)
$$

for all $a, b \in \mathbb{Z}$. We can also think of them as functions $\mathbb{Z} \rightarrow \mathbb{C}$ by precomposing with the $(\bmod m)$ map.

Its L-function is the function

$$
L(\chi, s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

Dirichlet characters

A Dirichlet character is a function $\chi: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{C}$ such that

$$
\chi(a b)=\chi(a) \chi(b)
$$

for all $a, b \in \mathbb{Z}$. We can also think of them as functions $\mathbb{Z} \rightarrow \mathbb{C}$ by precomposing with the $(\bmod m)$ map.

Its L-function is the function

$$
L(\chi, s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

Compare this to the Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Dirichlet characters (cont.)

The L-function also has an Euler product

$$
L(\chi, s)=\prod_{p \text { prime }}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1} .
$$

Dirichlet characters (cont.)

The L-function also has an Euler product

$$
L(\chi, s)=\prod_{p \text { prime }}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

Again compare to

$$
\zeta(s)=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

Dirichlet characters mod 4

n	1	2	3	4
$\chi_{1}(n)$	1	0	1	0
$\chi_{2}(n)$	1	0	-1	0

We want to know the values of $L(\chi, 1)$.

Dirichlet characters mod 4

n	1	2	3	4
$\chi_{1}(n)$	1	0	1	0
$\chi_{2}(n)$	1	0	-1	0

We want to know the values of $L(\chi, 1)$.
When $\chi=\chi_{1}$, we have the identity

$$
\begin{aligned}
L\left(\chi_{1}, s\right) & =1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\ldots \\
& =1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\ldots-\frac{1}{2^{s}}-\frac{1}{4^{s}}-\frac{1}{6^{s}} \ldots \\
& =\zeta(s)-\frac{1}{2^{s}} \zeta(s) \\
& =\left(1-\frac{1}{2^{s}}\right) \zeta(s)
\end{aligned}
$$

Dirichlet characters mod 4 (cont.)

Meanwhile,

$$
L\left(\chi_{2}, s\right)=1-\frac{1}{3^{s}}+\frac{1}{5^{s}}-\frac{1}{7^{s}}+\ldots
$$

As $s \rightarrow 1$, this approaches the value

$$
L\left(\chi_{2}, 1\right)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=
$$

Dirichlet characters mod 4 (cont.)

Meanwhile,

$$
L\left(\chi_{2}, s\right)=1-\frac{1}{3^{s}}+\frac{1}{5^{s}}-\frac{1}{7^{s}}+\ldots
$$

As $s \rightarrow 1$, this approaches the value

$$
L\left(\chi_{2}, 1\right)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}
$$

So $L\left(\chi_{1}, 1\right)$ diverges, and $L\left(\chi_{2}, 1\right)$ converges.

Dirichlet's theorem (again)

Using the Euler product, we get

$$
\begin{aligned}
\log (L(\chi, s)) & =-\sum_{p} \log \left(1-\frac{\chi(p)}{p^{s}}\right) \\
& =\sum_{p}\left(\frac{\chi(p)}{p^{s}}+\frac{\chi(p)^{2}}{2 p^{2 s}}+\frac{\chi(p)^{3}}{3 p^{3 s}}+\ldots\right) \\
& =\sum_{p} \frac{\chi(p)}{p^{s}}+A(\chi, s)
\end{aligned}
$$

Dirichlet's theorem (again)

Using the Euler product, we get

$$
\begin{aligned}
\log (L(\chi, s)) & =-\sum_{p} \log \left(1-\frac{\chi(p)}{p^{s}}\right) \\
& =\sum_{p}\left(\frac{\chi(p)}{p^{s}}+\frac{\chi(p)^{2}}{2 p^{2 s}}+\frac{\chi(p)^{3}}{3 p^{3 s}}+\ldots\right) \\
& =\sum_{p} \frac{\chi(p)}{p^{s}}+A(\chi, s)
\end{aligned}
$$

Easy to show that $A(\chi, s)$ is bounded as $s \rightarrow 1$.

Dirichlet's theorem (some more)

$$
\log (L(\chi, s))=\sum_{p} \frac{\chi(p)}{p^{s}}+A(\chi, s)
$$

We note

$$
\log \left(L\left(\chi_{1}, s\right)\right)+\log \left(L\left(\chi_{2}, s\right)\right)=\sum_{p} \frac{\chi_{1}(p)+\chi_{2}(p)}{p^{s}}+A\left(\chi_{1}, s\right)+A\left(\chi_{2}, s\right)
$$

Dirichlet's theorem (some more)

$$
\log (L(\chi, s))=\sum_{p} \frac{\chi(p)}{p^{s}}+A(\chi, s)
$$

We note

$$
\begin{gathered}
\log \left(L\left(\chi_{1}, s\right)\right)+\log \left(L\left(\chi_{2}, s\right)\right)=\sum_{p} \frac{\chi_{1}(p)+\chi_{2}(p)}{p^{s}}+A\left(\chi_{1}, s\right)+A\left(\chi_{2}, s\right) \\
\chi_{1}(p)+\chi_{2}(p)= \begin{cases}2 & \text { if } p \equiv 1(\bmod 4) \\
0 & \text { if } p \equiv 3(\bmod 4)\end{cases}
\end{gathered}
$$

Dirichlet's theorem (some more)

$$
\log (L(\chi, s))=\sum_{p} \frac{\chi(p)}{p^{s}}+A(\chi, s)
$$

We note

$$
\begin{gathered}
\log \left(L\left(\chi_{1}, s\right)\right)+\log \left(L\left(\chi_{2}, s\right)\right)=\sum_{p} \frac{\chi_{1}(p)+\chi_{2}(p)}{p^{s}}+A\left(\chi_{1}, s\right)+A\left(\chi_{2}, s\right) \\
\chi_{1}(p)+\chi_{2}(p)= \begin{cases}2 & \text { if } p \equiv 1(\bmod 4) \\
0 & \text { if } p \equiv 3(\bmod 4)\end{cases}
\end{gathered}
$$

So

$$
\log \left(L\left(\chi_{1}, s\right)\right)+\log \left(L\left(\chi_{2}, s\right)\right)=2 \sum_{p \equiv 1(\bmod 4)} \frac{1}{p^{s}}+A\left(\chi_{1}, s\right)+A\left(\chi_{2}, s\right)
$$

Dirichlet's theorem (yet more)

We can also reprove that there are infinitely many primes $\equiv 3(\bmod 4)$:

$$
\chi_{1}(p)-\chi_{2}(p)= \begin{cases}0 & \text { if } p \equiv 1(\bmod 4) \\ 2 & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

Dirichlet's theorem (yet more)

We can also reprove that there are infinitely many primes $\equiv 3(\bmod 4)$:

$$
\chi_{1}(p)-\chi_{2}(p)= \begin{cases}0 & \text { if } p \equiv 1(\bmod 4) \\ 2 & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

SO

$$
\log \left(L\left(\chi_{1}, s\right)\right)-\log \left(L\left(\chi_{2}, s\right)\right)=2 \sum_{p \equiv 3(\bmod 4)} \frac{1}{p^{s}}+A\left(\chi_{1}, s\right)-A\left(\chi_{2}, s\right)
$$

Dirichlet characters mod 5

n	1	2	3	4	5
$\chi_{1}(n)$	1	1	1	1	0
$\chi_{2}(n)$	1	i	-i	-1	0
$\chi_{3}(n)$	1	-1	-1	1	0
$\chi_{4}(n)$	1	-i	i	-1	0

Dirichlet characters mod 5

n	1	2	3	4	5
$\chi_{1}(n)$	1	1	1	1	0
$\chi_{2}(n)$	1	i	-i	-1	0
$\chi_{3}(n)$	1	-1	-1	1	0
$\chi_{4}(n)$	1	-i	i	-1	0

In a similar way, we have

$$
L\left(\chi_{1}, 1\right)=\infty, \quad L\left(\chi_{i}, 1\right)<\infty \text { for } 2 \leq i \leq 4
$$

Dirichlet characters mod 5

n	1	2	3	4	5
$\chi_{1}(n)$	1	1	1	1	0
$\chi_{2}(n)$	1	i	-i	-1	0
$\chi_{3}(n)$	1	-1	-1	1	0
$\chi_{4}(n)$	1	-i	i	-1	0

In a similar way, we have

$$
L\left(\chi_{1}, 1\right)=\infty, \quad L\left(\chi_{i}, 1\right)<\infty \text { for } 2 \leq i \leq 4
$$

Then we use orthogonality relations to pick out individual classes.

Dirichlet characters mod 5

n	1	2	3	4	5
$\chi_{1}(n)$	1	1	1	1	0
$\chi_{2}(n)$	1	i	-i	-1	0
$\chi_{3}(n)$	1	-1	-1	1	0
$\chi_{4}(n)$	1	-i	i	-1	0

In a similar way, we have

$$
L\left(\chi_{1}, 1\right)=\infty, \quad L\left(\chi_{i}, 1\right)<\infty \text { for } 2 \leq i \leq 4
$$

Then we use orthogonality relations to pick out individual classes. E.g.

$$
\chi_{1}(p)-\mathrm{i} \chi_{2}(p)-\chi_{3}(p)+\mathrm{i} \chi_{4}(p)= \begin{cases}4 & \text { if } p \equiv 2(\bmod 5) \\ 0 & \text { if } p \not \equiv 2(\bmod 5)\end{cases}
$$

Dirichlet characters mod 5

$$
\chi_{1}(p)-\mathrm{i} \chi_{2}(p)-\chi_{3}(p)+\mathrm{i} \chi_{4}(p)= \begin{cases}4 & \text { if } p \equiv 2(\bmod 5) \\ 0 & \text { if } p \not \equiv 2(\bmod 5)\end{cases}
$$

So

$$
L\left(\chi_{1}, 1\right)+(\text { other } L \text {-values }<\infty)=4 \sum_{p \equiv 2(\bmod 5)} \frac{1}{p}+(\text { constants })
$$

Dirichlet characters mod 5

$$
\chi_{1}(p)-\mathrm{i} \chi_{2}(p)-\chi_{3}(p)+\mathrm{i} \chi_{4}(p)= \begin{cases}4 & \text { if } p \equiv 2(\bmod 5) \\ 0 & \text { if } p \not \equiv 2(\bmod 5)\end{cases}
$$

So

$$
L\left(\chi_{1}, 1\right)+(\text { other } L \text {-values }<\infty)=4 \sum_{p \equiv 2(\bmod 5)} \frac{1}{p}+(\text { constants })
$$

The method generalises to all moduli d and all residues a to prove

$$
\sum_{p \equiv a(\bmod d)} \frac{1}{p}
$$

diverges.

Dirichlet's theorem in general

- $L\left(\chi_{1}, 1\right)$ diverges, the rest converge.
- Orthogonality of characters lets us pick out $\sum_{p \equiv a(\bmod d)} \frac{1}{p}$.
- Connection via Euler product relates the two.

That's it!

Dirichlet's theorem in general

- $L\left(\chi_{1}, 1\right)$ diverges, the rest converge.
- Orthogonality of characters lets us pick out $\sum_{p \equiv a(\bmod d)} \frac{1}{p}$.
- Connection via Euler product relates the two.

That's it*!

The ratio conjecture

We also claimed that

$$
\lim _{X \rightarrow \infty} \frac{P_{1}(X)}{P_{3}(X)}=1
$$

This is also TRUE. We will not prove it from first principles, as it requires a quite advanced result.

The ratio conjecture

We also claimed that

$$
\lim _{X \rightarrow \infty} \frac{P_{1}(X)}{P_{3}(X)}=1
$$

This is also TRUE. We will not prove it from first principles, as it requires a quite advanced result.

We define the density of a set $S \subset \mathbb{N}$ as

$$
D(S)=\lim _{X \rightarrow \infty} \frac{\{n \mid n \in S, n \leq X\}}{\{n \mid n \in \mathbb{N}, n \leq X\}}
$$

So $D(2 \mathbb{N})=\frac{1}{2}, D(3 \mathbb{N})=\frac{1}{3}, \ldots$

The ratio conjecture

We also claimed that

$$
\lim _{X \rightarrow \infty} \frac{P_{1}(X)}{P_{3}(X)}=1
$$

This is also TRUE. We will not prove it from first principles, as it requires a quite advanced result.

We define the density of a set $S \subset \mathbb{N}$ as

$$
D(S)=\lim _{X \rightarrow \infty} \frac{\{n \mid n \in S, n \leq X\}}{\{n \mid n \in \mathbb{N}, n \leq X\}}
$$

So $D(2 \mathbb{N})=\frac{1}{2}, D(3 \mathbb{N})=\frac{1}{3}, \ldots$
Also, $D(\mathcal{P})=0$, where \mathcal{P} is the set of primes.

The ratio conjecture (cont.)

Further, we can define the relative density of two sets $S, T \subset \mathbb{N}$ as

$$
D(S, T)=\lim _{X \rightarrow \infty} \frac{\{n \mid n \in S, n \leq X\}}{\{n \mid n \in T, n \leq X\}}
$$

So $D(4 \mathbb{N}, 2 \mathbb{N})=\frac{1}{2}, D(35 \mathbb{N}, 5 \mathbb{N})=\frac{1}{7}, \ldots$

The ratio conjecture (cont.)

Further, we can define the relative density of two sets $S, T \subset \mathbb{N}$ as

$$
D(S, T)=\lim _{X \rightarrow \infty} \frac{\{n \mid n \in S, n \leq X\}}{\{n \mid n \in T, n \leq X\}}
$$

So $D(4 \mathbb{N}, 2 \mathbb{N})=\frac{1}{2}, D(35 \mathbb{N}, 5 \mathbb{N})=\frac{1}{7}, \ldots$
We want to know about the relative densities of subsets of \mathcal{P}. Write $S_{1}=\{p \equiv 1(\bmod 4)\}$, and $S_{3}=\{p \equiv 3(\bmod 4)\}$. Since

$$
S_{1} \cap S_{3}=\emptyset, \quad S_{1} \cup S_{3}=\mathcal{P} \backslash\{2\}
$$

and we suspect that

$$
\lim _{X \rightarrow \infty} \frac{P_{1}(X)}{P_{3}(X)}=1 \quad "=" \frac{\# S_{1}}{\# S_{3}}
$$

we predict that $D\left(S_{1}, \mathcal{P}\right)=D\left(S_{3}, \mathcal{P}\right)=$

The ratio conjecture (cont.)

Further, we can define the relative density of two sets $S, T \subset \mathbb{N}$ as

$$
D(S, T)=\lim _{X \rightarrow \infty} \frac{\{n \mid n \in S, n \leq X\}}{\{n \mid n \in T, n \leq X\}}
$$

So $D(4 \mathbb{N}, 2 \mathbb{N})=\frac{1}{2}, D(35 \mathbb{N}, 5 \mathbb{N})=\frac{1}{7}, \ldots$
We want to know about the relative densities of subsets of \mathcal{P}. Write $S_{1}=\{p \equiv 1(\bmod 4)\}$, and $S_{3}=\{p \equiv 3(\bmod 4)\}$. Since

$$
S_{1} \cap S_{3}=\emptyset, \quad S_{1} \cup S_{3}=\mathcal{P} \backslash\{2\}
$$

and we suspect that

$$
\lim _{X \rightarrow \infty} \frac{P_{1}(X)}{P_{3}(X)}=1 \quad "=" \frac{\# S_{1}}{\# S_{3}}
$$

we predict that $D\left(S_{1}, \mathcal{P}\right)=D\left(S_{3}, \mathcal{P}\right)=\frac{1}{2}$

Chebotaryov Density

Theorem (Chebotaryov's density theorem)

Writing $S_{a, n}$ for the set of primes congruent to a mod n, we have

$$
D\left(S_{a, n}, \mathcal{P}\right)= \begin{cases}0 & \text { if } \operatorname{gcd}(a, n) \neq 1 \\ \frac{1}{\phi(n)} & \text { if } \operatorname{gcd}(a, n)=1\end{cases}
$$

Here $\phi(n)$ is the Euler totient function.

$$
\phi(n)=\#\{a \mid 1 \leq a \leq n, \operatorname{gcd}(a, n)=1\} .
$$

Chebotaryov Density

Theorem (Chebotaryov's density theorem)

Writing $S_{a, n}$ for the set of primes congruent to a mod n, we have

$$
D\left(S_{a, n}, \mathcal{P}\right)= \begin{cases}0 & \text { if } \operatorname{gcd}(a, n) \neq 1 \\ \frac{1}{\phi(n)} & \text { if } \operatorname{gcd}(a, n)=1\end{cases}
$$

Here $\phi(n)$ is the Euler totient function.

$$
\phi(n)=\#\{a \mid 1 \leq a \leq n, \operatorname{gcd}(a, n)=1\} .
$$

So

$$
D\left(S_{1}, \mathcal{P}\right)=D\left(S_{3}, \mathcal{P}\right)=\frac{1}{2}
$$

New prime number theorems

Recall the prime number theorem:

$$
\pi(X)=\frac{X}{\log (X)}+E(X)
$$

PNT + Dirichlet $=$

$$
\begin{aligned}
& \pi(X, 1(\bmod 4))=\frac{1}{2} \frac{X}{\log (X)}+E_{1}(X) \\
& \pi(X, 3(\bmod 4))=\frac{1}{2} \frac{X}{\log (X)}+E_{3}(X)
\end{aligned}
$$

The race to infinity

Recall the conjecture:
Conjecture (The race to infinity)
$P_{1}(X) \leq P_{3}(X)$ for all $X \in(0, \infty)$.

The race to infinity

Recall the conjecture:
Conjecture (The race to infinity)
$P_{1}(X) \leq P_{3}(X)$ for all $X \in(0, \infty)$.
This is conjecture is FALSE.

The race to infinity

Recall the conjecture:
Conjecture (The race to infinity)
$P_{1}(X) \leq P_{3}(X)$ for all $X \in(0, \infty)$.
This is conjecture is FALSE. In fact, it is VERY FALSE. The quantity

$$
P_{3}(X)-P_{1}(X)
$$

changes sign infinitely many times.

