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Arithmetic progressions

An arithmetic progression is a sequence of integers of the form

a, a+ d , a+ 2d , a+ 3d , . . .

That is, they are the values of functions of the form a+ dn at integers n.

A prime in the arithmetic progression is a prime number p of the form
a+ dn. So, in particular, we have

p ≡ a (mod d).

A natural immediate question is the following: for a given a and d , how
many primes are there in the arithmetic progression
a, a+ d , a+ 2d , a+ 3d , . . .?
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Some examples

If a = 1 and d = 2, we get

1, 3, 5, 7, 9, 11, 13, 15, 17, . . .

There are infinitely many primes in this arithmetic progression.

How many primes are there in the arithmetic progression
a, a+ d , a+ 2d , a+ 3d , . . .?

If gcd(a, d) ̸= 1 then there are NONE.
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Primes mod 4

We start with an easy case: d = 4. Let’s start making a list.

p 2 3 5 7 11 13 17 19 23 29 31 37 41

p (mod 4) 2 3 1 3 3 1 1 3 3 1 3 1 1

Two important classes: p ≡ 1 (mod 4) and p ≡ 3 (mod 4). With a
computer, we can easily find the number of primes of each kind up to
various bounds.
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Primes mod 4 (cont.)
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Primes mod 4 (cont.)

Both classes seem to grow indefinitely. It also seems that there are
ever-so-slightly more primes in the 3 class than the 1 class. This leads to
some conjectures:

Conjecture (Size of classes)

There are infinitely many primes p ≡ 1, 3 (mod 4).

Conjecture (Ratio of sizes)

Write Pi (X ) = #{p | p prime, p ≡ i (mod 4), p ≤ X}. Then

lim
X→∞

P1(X )

P3(X )
= 1.

Conjecture (The race to infinity)

P1(X ) ≤ P3(X ) for all X ∈ (0,∞).
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Size of classes

The first conjecture states that there are infinitely many primes
p ≡ 1, 3 (mod 4).

This is TRUE, which we now prove.

The case p ≡ 1 (mod 4) works almost the same, but there is a technical
hitch that requires some work to solve.
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Dirichlet’s theorem

Theorem (Dirichlet’s theorem on primes in arithmetic progressions)

Let a, d ∈ N such that gcd(a, d) = 1. Then there are infinitely many
primes p ≡ a (mod d).

The proof essentially boils down to proving that the sum∑
p≡a (mod d)

1

p

diverges. The main techniques are some group theory and some complex
analysis.
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Dirichlet characters

A Dirichlet character is a function χ : Z/mZ → C such that

χ(ab) = χ(a)χ(b)

for all a, b ∈ Z. We can also think of them as functions Z → C by
precomposing with the (mod m) map.

Its L-function is the function

L(χ, s) =
∞∑
n=1

χ(n)

ns
.

Compare this to the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
.
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Dirichlet characters (cont.)

The L-function also has an Euler product

L(χ, s) =
∏

p prime

(
1− χ(p)

ps

)−1

.

Again compare to

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.
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Dirichlet characters mod 4

n 1 2 3 4

χ1(n) 1 0 1 0
χ2(n) 1 0 −1 0

We want to know the values of L(χ, 1).

When χ = χ1, we have the identity

L(χ1, s) = 1 +
1

3s
+

1

5s
+ . . .

= 1 +
1

2s
+

1

3s
+ . . .− 1

2s
− 1

4s
− 1

6s
. . .

= ζ(s)− 1

2s
ζ(s)

=

(
1− 1

2s

)
ζ(s)
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Dirichlet characters mod 4 (cont.)

Meanwhile,

L(χ2, s) = 1− 1

3s
+

1

5s
− 1

7s
+ . . .

As s → 1, this approaches the value

L(χ2, 1) = 1− 1

3
+

1

5
− 1

7
+ . . . =

So L(χ1, 1) diverges, and L(χ2, 1) converges.
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Dirichlet’s theorem (again)

Using the Euler product, we get

log(L(χ, s)) = −
∑
p

log

(
1− χ(p)

ps

)

=
∑
p

(
χ(p)

ps
+

χ(p)2

2p2s
+

χ(p)3

3p3s
+ . . .

)
=

∑
p

χ(p)

ps
+ A(χ, s).

Easy to show that A(χ, s) is bounded as s → 1.
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Dirichlet’s theorem (some more)

log(L(χ, s)) =
∑
p

χ(p)

ps
+ A(χ, s).

We note

log(L(χ1, s)) + log(L(χ2, s)) =
∑
p

χ1(p) + χ2(p)

ps
+ A(χ1, s) + A(χ2, s).

χ1(p) + χ2(p) =

{
2 if p ≡ 1 (mod 4)

0 if p ≡ 3 (mod 4)

So

log(L(χ1, s)) + log(L(χ2, s)) = 2
∑

p≡1 (mod 4)

1

ps
+ A(χ1, s) + A(χ2, s).
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Dirichlet’s theorem (yet more)

We can also reprove that there are infinitely many primes ≡ 3 (mod 4):

χ1(p)− χ2(p) =

{
0 if p ≡ 1 (mod 4)

2 if p ≡ 3 (mod 4)

so

log(L(χ1, s))− log(L(χ2, s)) = 2
∑

p≡3 (mod 4)

1

ps
+ A(χ1, s)− A(χ2, s).
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Dirichlet characters mod 5

n 1 2 3 4 5

χ1(n) 1 1 1 1 0
χ2(n) 1 i −i −1 0
χ3(n) 1 −1 −1 1 0
χ4(n) 1 −i i −1 0

In a similar way, we have

L(χ1, 1) = ∞, L(χi , 1) < ∞ for 2 ≤ i ≤ 4.

Then we use orthogonality relations to pick out individual classes.
E.g.

χ1(p)− iχ2(p)− χ3(p) + iχ4(p) =

{
4 if p ≡ 2 (mod 5)

0 if p ̸≡ 2 (mod 5)
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Dirichlet characters mod 5

χ1(p)− iχ2(p)− χ3(p) + iχ4(p) =

{
4 if p ≡ 2 (mod 5)

0 if p ̸≡ 2 (mod 5)

So

L(χ1, 1) + (other L-values < ∞) = 4
∑

p≡2 (mod 5)

1

p
+ (constants)

The method generalises to all moduli d and all residues a to prove∑
p≡a (mod d)

1

p

diverges.
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Dirichlet’s theorem in general

L(χ1, 1) diverges, the rest converge.

Orthogonality of characters lets us pick out
∑

p≡a (mod d)
1
p .

Connection via Euler product relates the two.

That’s it!
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The ratio conjecture

We also claimed that

lim
X→∞

P1(X )

P3(X )
= 1.

This is also TRUE. We will not prove it from first principles, as it requires
a quite advanced result.

We define the density of a set S ⊂ N as

D(S) = lim
X→∞

{n | n ∈ S , n ≤ X}
{n | n ∈ N, n ≤ X}

.

So D(2N) = 1
2 , D(3N) = 1

3 , ...

Also, D(P) = 0, where P is the set of primes.
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The ratio conjecture (cont.)

Further, we can define the relative density of two sets S ,T ⊂ N as

D(S ,T ) = lim
X→∞

{n | n ∈ S , n ≤ X}
{n | n ∈ T , n ≤ X}

.

So D(4N, 2N) = 1
2 , D(35N, 5N) = 1

7 ,...

We want to know about the relative densities of subsets of P. Write
S1 = {p ≡ 1 (mod 4)}, and S3 = {p ≡ 3 (mod 4)}. Since

S1 ∩ S3 = ∅, S1 ∪ S3 = P\{2},

and we suspect that

lim
X→∞

P1(X )

P3(X )
= 1 “ = ”

#S1
#S3

,

we predict that
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Chebotaryov Density

Theorem (Chebotaryov’s density theorem)

Writing Sa,n for the set of primes congruent to a mod n, we have

D(Sa,n,P) =

{
0 if gcd(a, n) ̸= 1
1

ϕ(n) if gcd(a, n) = 1

Here ϕ(n) is the Euler totient function.

ϕ(n) = #{a | 1 ≤ a ≤ n, gcd(a, n) = 1}.

So

D(S1,P) = D(S3,P) =
1

2
.
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Here ϕ(n) is the Euler totient function.

ϕ(n) = #{a | 1 ≤ a ≤ n, gcd(a, n) = 1}.

So

D(S1,P) = D(S3,P) =
1

2
.
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New prime number theorems

Recall the prime number theorem:

π(X ) =
X

log(X )
+ E (X )

PNT + Dirichlet =

π(X , 1 (mod 4)) =
1

2

X

log(X )
+ E1(X )

π(X , 3 (mod 4)) =
1

2

X

log(X )
+ E3(X )

Lewis Combes (University of Sheffield) Primes in arithmetic progressions 22 / 23



The race to infinity

Recall the conjecture:

Conjecture (The race to infinity)

P1(X ) ≤ P3(X ) for all X ∈ (0,∞).

This is conjecture is FALSE. In fact, it is VERY FALSE. The quantity

P3(X )− P1(X )

changes sign infinitely many times.
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