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Diophantine equations

A Diophantine equation is an integer polynomial equation in two or
more variables.

The only solutions of a Diophantine equation we care about are integral
solutions. And sometimes rational solutions.

Examples:

x2 + y2 = z2

x3 + y3 = z3

x2 − y3 = 1

x3 + (x + 1)3 + (x + 2)3 = y3
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The simplest Diophantine equation

The simplest Diohpantine equation is the linear equation in two variables:

ax + by = c

for integers a, b, c.

The solutions to this equation can be found by a
simple rearrangement:

y =
c − ax

b
.

The integral solutions to this equation are well-understood. There are
infinitely many solutions, or none, depending on the gcd of a, b and
whether it divides c .
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The next-hardest Diophantine equation

After linear equations, come quadratic equations.

ax2 + bxy + cy2 + dx + ey + f = 0.

Finding the rational solutions to these equations is a solved problem, and
uses the p-adic numbers.
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What is an elliptic curve?

Going up to degree 3, we get equations of the form:

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0.

We can use linear transformations to put this equation in a “standard
form”:

E : y2 = x3 + Ax + B,

for some A,B ∈ Q. This is an elliptic curve.
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Points on elliptic curves

E : y2 = x3 − 4x + 4

Points on E :

(x , y) = (−1,
√
7)

= (−5,
√
−101)

=

(
3
√

18− 2
√
33

3
√
3
2

−
3
√
2
5

3
√
27− 3

√
33

, 0

)
= (310, 5458)
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Rational points on elliptic curves

One again, we care about rational points on these curves. Figuring out
whether there are is hard.

Example:

y2 = x3 + x + 29⇝ no rational points

y2 = x3 + x + 30⇝ 1 rational point

y2 = x3 + x + 31⇝ infinitely many rational points

There is an algorithm to figure out the exact number of points that always
works. Nobody knows if it does always work. If you can prove it does, you
can claim a $1,000,000 prize from the Clay Institute.
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(a) y 2 = x3 − x + 1 (b) y 2 = x3 − 63x − 18

Figure: Elliptic curve pictures borrowed from the LMFDB.
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The first elliptic curve

Diophantus of Alexandria wrote Arithmetica around 200AD. It consisted of
many problems that we would recognise as Diophantine equations.

One such problem invites the reader: “to divide a given number into two
numbers such that their product is a cube minus its side.”

Y (a− Y ) = X 3 − X .

Diophantus went on to find solutions in the case of a = 6:

6Y − Y 2 = X 3 − X .

Can you spot any easy ones?
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The first elliptic curve (cont.)

E : 6Y − Y 2 = X 3 − X .

Easiest solution: (X ,Y ) = (0, 0).

Unsatisfying to us, and probably Diophantus too. Ancient Greek
mathematics was concerned with real quantities. Negatives and zeros were
generally understood to be ignored as “less interesting”.

Another easy(ish) solution: (X ,Y ) = (1, 6).

Less-obvious solution: (X ,Y ) =
(
664
169 ,−

11220
2197

)
.

A non-obvious solution: (X ,Y ) =
(
− 10370209823

214448643396 ,−
797444260812577

99308164475680056

)
.
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The first elliptic curve (cont.)

Clearly something mysterious going on. Diophantus himself produced the
solution

(X ,Y ) =
(
17
9 ,

26
27

)
.

He does so using the group law on the elliptic curve.

A group is a set G with a binary operation · such that

1 For all g , h ∈ G , one has g · h ∈ G

2 There is a distinguished element IdG such that g · IdG = IdG ·g = g
for all g ∈ G .

3 For every g ∈ G , there is a g−1 ∈ G such that g · g−1 = IdG .

4 The operation · is associative—i.e. (g · h) · k = g · (h · k).
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The group law on elliptic curves

−3 −2 −1 1 2 3

−2

2

P Q

R

P ⊕ Q

Figure: Elliptic Curve addition.
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The group law on elliptic curves (cont.)

Diophantus used the group law (though he did not know it) to produce his
solution (X ,Y ) =

(
17
9 ,

26
27

)
to E : 6Y − Y 2 = X 3 − X .

Starting with the simpler solution P = (−1, 6), one can use the group law
by adding P to itself to get a new solution.

It is a long and tedious calculation.
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So what?

The group law on elliptic curves is special. A random curve is very unlikely
to have a group law. This makes studying elliptic curves somewhat
feasible, relative to curves defined by polynomials of higher degree.

Points on an elliptic curve E have the structure of a finitely-generated
abelian group. The group of rational points, written E (Q), takes the
special form

E (Q) ≃ T + Zr .

Two parts:

T : finite subgroup of torsion points,

r : the number of independent generators of infinite order, called the
rank.
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The mysterious rank

The torsion subgroup T is well-understood. In fact, it has been classified
exactly. There are only 15 possible groups T can be.

The rank is much more mysterious.

y2 = x3 + x + 29⇝ no rational points

y2 = x3 + x + 30⇝ 1 rational point

y2 = x3 + x + 31⇝ infinitely many rational points
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The mysterious rank

The torsion subgroup T is well-understood. In fact, it has been classified
exactly. There are only 15 possible groups T can be.

The rank is much more mysterious.

y2 = x3 + x + 29⇝ r = 0 & T = C1

y2 = x3 + x + 30⇝ r = 0 & T = C2

y2 = x3 + x + 31⇝ r = 1 & T = C1
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Birch and Swinnerton-Dyer’s conjecture

In the year 2000, the Clay Institute issued a list of seven Millenium Prize
Problems. The Birch and Swinnerton-Dyer conjecture is one of these
problems.

BSD describes exactly how to find the rank of an elliptic curve E . It is one
of the first major conjectures in number theory to arise from large-scale
computer calculations.

Fundamental idea: look at the elliptic curves modulo prime numbers.

It is not enough to find points on a curve mod p and lift them to Q.
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Birch and Swinnerton Dyer’s conjecture (cont.)

However, it is still worth a try.

Principle: if an elliptic curve has rank > 0, it has “lots of points”, so it
should still have “lots of points” (mod p).

Birch and Swinnerton-Dyer developed the conjecture in the 1960s.

(a) Birch and Swinnerton-Dyer (b) Computers in the 1960s
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However, it is still worth a try.

Principle: if an elliptic curve has rank > 0, it has “lots of points”, so it
should still have “lots of points” (mod p).

Birch and Swinnerton-Dyer developed the conjecture in the 1960s.

(c) Birch and Swinnerton-Dyer (d) Computers in the 1960s
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Elliptic curves over Fp

Fp = Z/pZ.

E : y2 = x3 − x + 9

Let p = 5. A point on E over F5 is a pair (x , y) ∈ F2
p satisfying E .

E.g. (x , y) = (4, 2).

Hasse-Weil bound tell us

−2
√
p + p + 1 ≤ #E (Fp) ≤ 2

√
p + p + 1.

or, if you prefer,
|#E (Fp)− (p + 1)| ≤ 2

√
p.
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BSD example

The original statement of the conjecture is the following:∏
p≤X

#E (Fp)

p
≈ C log(X )rank(E)

as X → ∞. Here C is some constant.

E.g. E1 : y
2 = x3 − x + 9, and E2 : y

2 = x3 − x + 5.

p 2 3 5 7 11 13 17 19 23 29 31 37

#E1(Fp) 3 4 8 9 16 15 24 16 32 36 37 39

#E2(Fp) 3 1 8 7 13 10 17 20 18 36 30 32

Which one of these curves “should” have rank > 0?
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BSD example (cont.)

(e)
∏

n≤X
#E1(Fp)

p
(f)

∏
n≤X

#E2(Fp)
p
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BSD example (cont.)

(k) 1
log(X )2

∏
n≤X

#E1(Fp)
p

(l)
∏

n≤X
#E2(Fp)

p
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Current state of BSD

Combining the work of Coates & Wiles, Gross & Zagier, Kolyvagin, Wiles,
Taylor & Wiles and Breuil-Conrad-Diamond-Taylor, one has the following:

Theorem (due to everyone above + more)

BSD is true for all elliptic curves of rank 0 and rank 1.

For ranks ≥ 2, nothing is known. We can’t even provably verify the
conjecture for ranks ≥ 4.

The Clay Institute’s $1,000,000 is still waiting to be claimed...
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Fermat’s Last Theorem
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Fermat’s Last Theorem (cont.)

Wiles’ strategy: start with an assumed solution ap + bp = cp for a prime
p. Use this to create an elliptic curve

E : y2 = x(x − ap)(x + bp)

called a Frey curve.

Because a, b, c ∈ Z, the curve E ends up having very special properties.

In particular, it cannot be modular. Wiles proved that all∗ elliptic curves
are modular, so the solution leads to a curve that can’t exist.
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